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The Chesapeake Bay and its tributaries provide a range of recreational and aesthetic amenities, such as swim-
ming, fishing, boating, wildlife viewing, and scenic vistas. Living in close proximity to the Bay improves access
to these amenities and should be capitalized into local housingmarkets.We investigate these impacts in the larg-
est hedonic analysis of water quality ever completed, with over 200,000 property sales across 14 Maryland
counties.Weuse a spatially explicitwater quality dataset, alongwith awealth of landscape, economic, geograph-
ic, and demographic variables. These data allow a comprehensive exploration of the value of water quality, while
controlling for a multitude of other influences. We also estimate several variants of the models most popular in
current literature, with a focus on the temporal average ofwater quality. In comparing 1 year and 3 year averages,
the 3 year averages generally have a larger implicit price. Overall, results indicate that water quality improve-
ments in the Bay, such as those required by EPA's Total Maximum Daily Load, could yield significant benefits
to waterfront and near-waterfront homeowners.
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1. Introduction

The Chesapeake Bay and its tributaries provide a range of recreation-
al and aesthetic amenities, such as swimming, fishing, boating, wildlife
viewing, and scenic vistas. Living in close proximity to the Bay improves
access to these amenities and so should be capitalized into local housing
markets. Indeed, homes near the waterfront command a premium in
real estate markets across the country because of the unique services
they provide (Brown and Polakowski, 1977; Lansford and Jones, 1995;
Palmquist and Fulcher, 2006). This paper explores the value of water
quality on homes near the waterfront, which should reflect several cat-
egories of recreational and aesthetic amenities.

Water pollution has been a chronic problem for the Chesapeake Bay
over the last century, as agriculture, industry, and local populations
have expanded. After a range of unsuccessful local and state efforts, in
2010 the US Environmental Protection Agency (hereafter EPA) passed
the Chesapeake Bay Total Maximum Daily Load (TMDL), which assigns
pollution limits to all areas of the watershed. The TMDL represents a
substantial advance in combatting pollution since all states in the
watershed—Maryland, Virginia, Pennsylvania, West Virginia, New
York, and Delaware—and Washington, D.C. are now required to meet
aland.
alsh).
the assigned pollution limits by the year 2025. TMDL goals are tied to
specific deadlines, and extensive measures have been taken to ensure
accountability.1 Since the TMDL is projected to improve water quality
in the Bay and its tributaries, the subsequent improvements in recrea-
tional, aesthetic, and other amenitiesmay be reflected in nearbyproper-
ty prices.

Hedonic property value analysis models the price of a home as a
function of its characteristics. This approach has been used to value nu-
merous types of environmental commodities. However, there are a va-
riety of unresolved issues in the literature, particularly with respect to
water quality. This is the largest hedonic analysis of water quality to
date, with over 220,000 observations across 14 counties. Due to the
size of the analysis, we are able to explore several important issues, in
addition to reporting themain results of our preferredmodels. In partic-
ular, we focus on the representation of water quality in the hedonic
equation. Most recent literature uses one year averages of the water
quality indicator, frequently entering in natural log form. We compare
one year averages to longer-term averages in both natural logs and
levels and discuss the pros and cons of each approach. Finally, we also
assess differences in spatial dependence and the spatial extent of
water quality price impacts.
1 For further details on the TMDL, see http://www.epa.gov/chesapeakebaytmdl/
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2. Literature Review

2.1. Hedonic Studies of Water Quality

Hedonic property price analysis typically uses recorded real estate
transactions, so estimates are based on actual behavior revealed in the
market. Using statistical regression techniques, it is possible to estimate
the price of a home as a function of its characteristics. Since local envi-
ronmental conditions are relevant home characteristics, it is possible
to estimate their value using hedonic analysis. Rosen (1974) derived
the theoretical framework for hedonic analysis using a model of con-
sumer bid and producer offer functions. Based on several assumptions
about the market and interacting agents, Rosen demonstrated that in
equilibrium the estimated marginal implicit prices equal the
homebuyer's marginal willingness to pay, thus allowing for marginal
welfare inferences from the estimated hedonic price function. Further-
more, even non-marginal welfare changes can be estimated in cases
where certain assumptions hold, including that the hedonic price
schedule remains constant.2

Hedonic analysis has been used to study the impact of a variety of
local environmental commodities, including air pollution (Smith and
Huang, 1995), property shoreline (Brown and Polakowski, 1977) and
land contamination (Haninger et al., 2014), as well as green urban
parks, open space, and noise pollution.3 The literature also includes he-
donic analyses of water quality, though until recently the limitations of
water quality monitoring data have hindered large-scale studies.4

One of the earliest studies of the impact of water quality on property
prices is an unpublished EPA report by David (1968), which analyzed
variation in land values around sixty different lakes in Wisconsin.
Since then there have been several hedonic studies focusing on water
quality, with a first wave in the late 1990's/early 2000's focusing onwa-
terfront homes around freshwater lakes, particularly those in theNorth-
east US (Young, 1984; Michael et al., 1996, 2000; Boyle et al., 1999;
Boyle and Taylor, 2001; Poor et al., 2001, Gibbs et al., 2002). Other
water bodies have been examined, with studies finding that waterfront
home values are affected by the quality of local streams and rivers (Epp
and Al-Ani, 1979; Bin and Czajkowski, 2013), and larger water bodies,
such as the Great Lakes (Ara, 2007) and coastal harbors (Mendelsohn
et al., 1992). More recent research has considered Florida (Walsh et
al., 2011a, 2011b; Bin and Czajkowski, 2013), Oregon (Netusil et al.,
2014), and Finland (Artell et al., 2013), among other study areas.

There are two previous hedonic studies of water quality in the Ches-
apeake Bay watershed. Leggett and Bockstael (2000) found that fecal
coliform concentrations have a negative impact on Bayfront home
values in Anne Arundel County, Maryland. Poor et al. (2007) explored
the impact of ambient water quality on homes near the St. Mary's
River, a tributary of the Chesapeake Bay. They found a negative impact
of pollutant concentrations on both waterfront and non-waterfront
homes.

Most of the hedonic property value studies of water quality focus
solely on waterfront properties. Poor et al.'s (2007) study of the St.
Mary's River was the first published paper to estimate water quality im-
pacts on the value of non-waterfront homes. However, the authors in-
clude all homes within the study area and do not distinguish between
waterfront and non-waterfront homes in their model. Walsh et al.
(2011b) explicitly estimate separate implicit prices of water clarity for
waterfront and non-waterfront homes around 146 lakes in Orange
2 Kuminoff and Pope (2014) demonstrate the conditions under which non-marginal
welfare changes equal the change in price.

3 See D'Acci (2014) for a useful and succinct summary of the hedonic literature on these
and other urban commodities.

4 Now that monitoring data is becoming more widely available, several organizations
have recently started aggregating water quality data in a more comprehensive and acces-
sible format, such as the university of South Florida's Water Quality Atlas: http://www.
wateratlas.usf.edu/.
County, Florida. They find a statistically significant impact on non-wa-
terfront homes that extends up to 1000 m from a lake.

There is currently no single accepted best practice for the represen-
tation of water quality in the hedonic equation. Clarity, represented by
secchi disk measurement (SDM), is the most common measure used
in the literature, with increases in lake clarity generally leading to ap-
preciation in waterfront home values. However, a variety of other indi-
cators have been used, and identifying appropriate measures of water
quality has been the focus of much research in hedonics and other val-
uation methods (Griffiths et al., 2012). Other measures used in past he-
donic studies include pH, dissolved oxygen, biochemical oxygen
demand, acid fromminerals and carbon dioxide, fecal coliform, total ni-
trogen, total phosphorus, chlorophyll a, dissolved inorganic nitrogen,
and total suspended solids (Epp and Al-Ani, 1979; Poor et al., 2001;
Leggett and Bockstael, 2000; Walsh et al., 2011a, Netusil et al., 2014).
The early literature that examined different measures suggested that
the indicatorsmost visible to people, such as clarity, oil content and tur-
bidity, were most likely to explain variation in property values
(Feenberg and Mills, 1980; Brashares, 1985).

There is also no single approach for the temporal duration of the
water quality measure included in the hedonic equation. Most recent
papers use water quality values from a single year (for example,
Walsh et al. (2011a), Netusil et al. (2014)). However, individual prefer-
ences and perceptions may be better captured by longer averages.
Michael et al. (2000) suggest that historical trends in water quality
might cause some stickiness in price, and that expectations of future
water quality may be influenced by historical trends. On the other
hand, the longer the average of water quality, the more likely it is that
unobserved influences on property values could be correlated with
the variable. Michael et al. (2000) explored several different ways of
measuring water clarity, including historical means over one year and
10 years, historical minimums over one year and 10 years, and variables
indicating a positive or negative recent trend. All of those variations
were significant and of the expected sign, but exhibited a range of mag-
nitudes that Michael et al. contend could lead to different policy
outcomes.

3. Data

3.1. Property Data

Data on all residential transactions in Maryland from 1996 to 2008
were obtained from Maryland Property View (MDPV), which is a com-
pilation of the tax assessment and sales databases from the tax
assessor's office in each county. In order to better identify the effect of
Bay water quality on the value of nearby residential properties, the
sales data are limited to the 229,513 single family and townhouse trans-
actions within four kilometers of the Chesapeake Bay tidal waters.5 The
Chesapeake Bay tidal waters include themain stemof the Bay, aswell as
the tidal portions of the tributaries entering the Bay, including fresh and
brackishwaters. Fig. 1 shows amap of the study area, illustrating the 14
counties in this study, as well as the nearby portions of the Bay and its
major tributaries.

The MDPV data contain a wealth of variables describing the home
structure and parcel including age, square footage, lot size, number of
bathrooms, and the existence of a basement and garage; as well as the
transaction price and date, whether the home is on the waterfront,
5 More specifically, the analysis focuses on full property arms-length transactions of
homes classified as standard single-family units and townhouses. In order to avoid the in-
fluence of outliers on our results, we omit homes with sales prices b$30,000 and
N$4,000,000. Limiting the analysis to a 4 km buffer of waterfront and near-waterfront
properties around the Bay helps ensure a more homogenous housing market in order to
minimize omitted variable bias. Past hedonic studies (Walsh et al., 2011a, 2011b; Netusil
et al., 2014) found that water quality price effects can extend up to one mile away in the
context of freshwater lakes in Florida and streams inWashington and Oregon. To be con-
servative, we include homes out to 4 km.

http://www.wateratlas.usf.edu/
http://www.wateratlas.usf.edu/


Fig. 1. Chesapeake Bay tidal waters and 14 Maryland Bay counties.

Table 1
Select Summary Statistics of Residential Transactions by County.

County Obs

Mean
sale
price

% Waterfront
properties

% 0 to 500 m
buffer

% 500 to
1000 m buffer

Anne
Arundel

76,842 373,199 10.4 43.6 23.2

Baltimore 34,781 167,766 9.4 40.3 23.1
Calvert 15,563 307,438 8.7 28.5 21.7
Cecil 10,816 250,576 8.8 28.2 21.3
Charles 5397 292,142 7.7 24.2 22.9
Dorchester 4358 217,662 16.8 38.3 26.6
Harford 17,483 230,199 3.5 18.9 20.8
Kent 3388 307,314 14.1 43.1 20.7
Prince
George's

24,969 264,662 0.6 10.7 19.4

Queen
Anne's

8674 392,945 16.6 46.1 26.4

Somerset 1681 158,194 18.7 34 33.4
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and its geographic coordinates, which we use to calculate proximity to
the water (among other spatial variables). Table 1 contains a few de-
scriptive statistics across all 14 counties, including the number of obser-
vations, mean sale price, and variables describing the distribution of
sales near the water. Anne Arundel County has the highest average
sales price, at $373,199, as well as the most observations (76,842). On
the other hand, Somerset County has the lowest sales price
($158,194) and number of observations (1681). Talbot County has the
largest share of waterfront homes in the sample, with almost 20% of
homes in the data set. Prince George's County, which only has a small
amount of frontage on a tributary, has the smallest share of waterfront
properties, with only 0.6%.

In order to properly control for factors that influence housing prices,
we match each parcel to a wealth of neighborhood, socioeconomic, and
other variables that influence a home's value. State and local GIS maps
were used to portray local land uses andproximity to a range of relevant
variables, such as distance to Washington D.C., local water treatment
plants,6 beaches, and several other amenities and disamenities. Since
St. Mary's 5966 278,967 10.8 24.1 15.8
Talbot 8227 507,353 19.6 34.4 13.2
Wicomico 11,368 194,521 2.4 34.9 29.4

6 Following Leggett and Bockstael's (2000) concernswith potential omitted variable bi-
as associated with proximity to pollution sources.



106 P. Walsh et al. / Ecological Economics 135 (2017) 103–113
the bay is composed of brackish water, there are four different salinity
regimes throughout the bay and its immediate tributaries. Different sa-
linity regimesmay present a different set of water-based amenities, and
so we include dummy variables denoting each regime (when there is
variation in these classifications within a county).7 A full list of the
right-hand side variables is provided in Table 2. These control variables
represent a very comprehensive set of controls, capturing more poten-
tial influences than the majority of past hedonic studies. However, not
all variables appear on the right-hand side for each county. For example,
on theWestern Shore of Bay, distance to DC or Baltimore (whichever is
closest) is used. On the Eastern Shore, distance to the Bay Bridge—which
gives access to DC and Baltimore, is used. To provide an idea of general
magnitudes, Table 2 also contains summary statistics from the entire
dataset—pooled across all counties.

With the large number of right-hand side variables available,
multicollinearity is a concern, especially in the smaller counties. To cor-
rect for these concerns, we start with the variance inflation factors (VIF)
of each variable. Although several sources suggest using a threshold VIF
of 10 or 20 (Kutner et al., 2004), others caution against VIF thresholds as
a means to remove variables (O'Brien, 2007). We start by identifying if
there are any non-interacted variables (which we would expect to be
somewhat collinear)with a VIF N15. If an examination of the correlation
coefficients indicates that the variable is highly correlated with other
important variables, it is dropped. In most cases, variables were corre-
lated with fixed effects, and their removal never had more than a min-
iscule impact on the estimated water quality coefficients.

Since our data span the recent swings in the housingmarket, it is im-
portant to be mindful of disequilibrium behavior.8 One sign of disequi-
librium is an increase in the number of vacancies. (Boyle et al., 2012).
Fig. 2 contains a graph of the percent of vacant sales over time in each
county used in the present study. The majority of the counties actually
show a decrease in vacancies after 2004–2005, with Prince George's
County being the main exception. In addition, home prices are deflated
using the seasonally adjusted Federal Housing Finance Agency's (FHFA)
home price index,9 and annual and quarterly dummies are included as
control variables in the hedonic regressions.
3.2. Water Quality Data

The water quality data come from EPA's Chesapeake Bay Program
Office (CBP), which collects samples twice a month from monitoring
stations throughout the Bay tidal waters. CBP interpolates these water
quality data, producing a spatial grid that covers the entire Bay and
tidal tributaries. Each grid cell is a maximum of 1 km2 in size (with
smaller grid cells in the tributaries), and each cell has a unique value
for water quality measures over time.

While CBP collects data on several indicators of water quality, we
focus on light attenuation—represented by KD, the water-column light
attenuation coefficient—as the primary indicator of interest. KD is essen-
tially the inverse of water clarity; higher light attenuation is equivalent
to cloudier water.10 As discussed previously, the hedonic literature pro-
vides strong support for the notion that homebuyers value water clarity
(Feenberg and Mills, 1980; Walsh et al., 2011a; Bin and Czajkowski,
2013).Wematch each home sale to the average light attenuation across
7 The zones are tidal fresh, olihohaline, mesohaline, and polyhaline. For an example
map of salinity regimes in the Bay, see http://www.chesapeakebay.net/maps/map/sav_
salinity_zones, as well as http://www.chesapeakebay.net/maps/map/chesapeake_bay_
mean_surface_salinity_summer_1985_2006.

8 Although some studies find implicit prices to be unaffected by swings in the housing
market (Lueung et al., 2007), others find the opposite (Shimizu and Nishimura (2007),
Chen and Hao (2008)). Also, Bin et al. (2016) examine the hedonic implicit price of water
quality in Martin County, Florida, during the recent recession and find that the implicit
price of water quality is still significant during the recession.

9 http://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx.
10 Light attenuation can be converted to SDM based on the following statistical relation-
ship: KD = 1.45/SDM (EPA, 2003).
the two closest grid cells. Each of the 14Maryland Bay counties included
in our analysis is covered by several monitoring stations, allowing us to
capture spatial variation in water clarity.11 On average, each county is
bordered by 165 unique grid cells.

To reflect the temporal variation in water quality expected to be rel-
evant for homebuyers, the past literature presents several temporal op-
tions. The majority of previous papers employ a water quality average
from the year the property is sold. One popular approach is to use the
average over the whole year. Gibbs et al. (2002) Leggett and Bockstael
(2000), Poor et al. (2007), and Walsh et al. (2011b) match homes to
the annual average of water quality in the year the home was sold.
Other papers have used measures from a particular time of year. Boyle
et al. (1999) and Boyle and Taylor (2001) use theminimumwater clar-
ity from the previous summer months. Netusil et al. (2014) compare
wet season and dry season indicators (the study was done in the rainy
Pacific Northwest). They prefer the dry season (summer) results, since
residents are more likely to recreate on water during that time. In line
with this second group of studies, we use average KD from the spring
and summer (March–September) during or immediately prior to the
home sale.12 In the Chesapeake Bay area, most water-based recreation
activities occur during this time, and it is also when most adverse
water clarity conditions—such as algae blooms—occur (alongwith relat-
ed media coverage, which may be information sources for potential
homebuyers) (EPA, 2003, 2007; MD DNR, 2013).

Table 3 presents summary statistics for water clarity in the 14Mary-
land Bay counties.Mean light attenuation (KD) is 2.53m−1, correspond-
ing to a Secchi diskmeasurement of about 0.64m. Figs. 3 and 4 illustrate
patterns in water clarity over space and time, using 2002 (a year with
good clarity) and 2003 (a year with poor clarity) as examples. While
water clarity is worse in most areas in 2003, several hotspots of poor
clarity are constant across the two years.

4. Hedonic Property Value Methods

4.1. Empirical Model

The hedonic property value equation postulates that the price of a
home or housing bundle is a function of the individual attributes com-
posing that bundle, including characteristics of the home and parcel
(Hit), aswell as its location and neighborhood (Lit). Distance to the Ches-
apeake Bay tidal waters (Dit) and local Bay water quality levels (WQiτ),
as represented by the light attenuation coefficient KD, are of particular
interest in this analysis, and so these variables are represented separate-
ly from the vector of other locational attributes.13 Di is a vector of
dummy variables denoting different distance buffers, but this variable
could also be represented as a scalar measure, such as linear or inverse
distance. Lastly, pit denotes the price of home iwhen it was sold in peri-
od t. For the time being, consider a single housing market. The hedonic
price function is:

pit ¼ P Hit; Lit ;Di;WQiτ ;Ttð Þ ð1Þ

where Tt denotes a vector of year and quarter indicator variables to con-
trol for overall trends and seasonal cycles in the housing market.

The empirical model allows the influence of water quality on home
prices to vary with proximity to the Bay by interacting water quality
11 While the number of monitoring stations varied over the study period, water quality
in each county in the hedonic analysis was monitored at an average of 14 stations in
2006, for example.
12 Recognizing that most home sales take place several weeks after the buyer views the
property and makes an offer, we assign home sales occurring during June–December to
the same year's spring-summer average water quality. We assigned sales between Janu-
ary–May to the previous spring-summer average. Spring and summer light attenuation
are highly correlated in our dataset (ρ = 0.78).
13 Note that the water quality indicator is indexed by τ instead of t to reflect the use of
the previous spring/summer average, which may not always align with t.
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Table 2
RHS control variables and summary statistics (pooled across counties).

Variable Source Mean Std dev Min Max

Current improved value MDPV 116,816.5 88,632 10 2,396,310
Dummy: current improved value missing MDPV 0.026 0.16 0 1
Age of structure MDPV 28.8 27.3 0 359
Age squared MDPV 1577 3015 0 128,881
Structure size (square feet) MDPV 1544.6 734.3 16 13,940
Dummy: structure size missing MDPV 0.030 0.171 0 1
Acres of parcel MDPV 109.5 4064.8 0 871,200
Dummy: townhouse MDPV 0.182 0.386 0 1
Dummy: basement MPDV 0.432 0.495 0 1
Total # of bathrooms MDPV 1.4 0.95 0 20.5
Dummy: garage MDPV 0.247 0.431 0 1
Dummy: pool MPDV 0.009 0.094 0 1
Dummy:pier MDPV 0.007 0.086 0 1
Dummy: central air conditioning MDPV 0.572 0.495 0 1
Dummy: high-density residential area MDPV 0.180 0.384 0 1
Dummy: medium-density residential area MPDV 0.515 0.500 0 1
Dummy: forested area MDPV 0.078 0.268 0 1
Distance to primary road (m) Federal highway administration 8447.2 9984.0 0.2 68,781.5
Distance to nearest wastewater treatment plant (m) EPA FRS 8206.0 6251.5 41.2 39,642.5
Distance to Baltimore (m) if western shore Derived using GIS data 41,123.3 28,429.6 5316.1 139,219.9
Distance to DC (m) if western shore Derived using GIS data 56,519.1 26,833.7 6978.3 132,599.5
Distance to Bay Bridge if eastern shore Derived using GIS data 41,562.9 24,240.8 690.3 126,724.8
Distance to nearest beach Derived using GIS data 9753.3 9841.9 1.9 38,752.8
Distance to Military Base Gate (St Mary's only) Derived using GIS data, following Poor et al. (2007) 13,342.4 11,183.3 6.8 36,389.9
Distance to Nearest urban area Derived using GIS data 22,515.3 13,645.2 100.4 63,150.2
Distance to nearest urban cluster Derived using GIS data 13,123.2 6576.6 7.8 33,332.0
Median household income Census (1990, 2000 & 2010) 60,961.6 20,091.4 0 16,0694
% of total population black Census (1990, 2000 & 2010) 0.174 0.222 0 0.987
% of total population Asian Census (1990, 2000 & 2010) 0.018 0.024 0 0.223
% of families below the poverty line Census (1990, 2000 & 2010) 0.053 0.056 0 0.488
% of total housing units that are vacant Census (1990, 2000 & 2010) 0.070 0.060 0 0.555
Population growth rate, 1990–2000 Census (1990, 2000 & 2010) 0.169 0.707 −1 29.3
Population Density in 2000 Census 2000 0.0012 0.0014 0 0.0095
% of population age 25+ w/higher education Census (1990 & 2000) 0.244 0.154 0 0.808
% of block group high-density residential MDPV 0.098 0.197 0 1
% of block group industrial MDPV 0.014 0.058 0 0.843
% of block group urban MDPV 0.026 0.059 0 0.630
% of block group agriculture MDPV 0.111 0.171 0 0.853
% of block group animal agriculture MDPV 0.001 0.006 0 0.166
% of block group forest MDPV 0.242 0.191 0 0.797
% of block group wetland MDPV 0.018 0.057 0 0.900
% of block group beach MDPV 0.0001 0.0028 0 0.074
Dummy: average home quality MDPV 0.748 0.434 0 1
Dummy: good home quality MDPV 0.035 0.185 0 1
Dummy: high home quality MDPV 0.001 0.037 0 1
Dummy: home quality determination missing MDPV 0.174 0.379 0 1
Water depth (m) EPA CBP 1.29 1.46 0.5 18.5
Dummy: location in 1000–1500 m buffer Derived using GIS data 0.142 0.349 0 1
Dummy: location in 1500–2000 m buffer Derived using GIS data 0.100 0.300 0 1
Dummy: oligohaline (low) salinity EPA CBP 0.208 0.406 0 1
Dummy: mesohaline (medium) salinity EPA CBP 0.623 0.485 0 1
Dummy: tributary (versus Bay main stem) Derived using GIS data 0.898 0.303 0 1
Dummy: location in a floodplain FEMA Floodplain Maps (MDPV) 0.057 0.231 0 1
Dummy: location in nuclear evacuation zone Derived using GIS data 0.042 0.201 0 1

14 Other buffer sizes were explored, but smaller sized buffers in some counties had too
few property sales for statistical analysis.
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with the Bay distance variables. The model can be written as:

ln pitð Þ ¼ β0 þHitβ1 þ Litβ2 þ Ttβ3 þ Diβ4 þ DiWQiτγþ εit ð2Þ

where the dependent variable ln(pit) is the natural log of the price of
home i sold in period t, and εit is an assumed normally distributed dis-
turbance. The coefficient vectors to be estimated are βk, for k = 0, …,
4, and γ.

The implicit prices associated with characteristics of the house (e.g.,
interior square footage, number of bathrooms, lot size) and its location
(e.g., proximity to nearest primary road, surrounding commercial or in-
dustrial land uses) are reflected in β1 and β2, respectively. The vector β3

represents overall market and cyclical trends over time, and the combi-
nation of β4 and its relevant interaction in γ express the influence of
proximity to the Bay on the price of a home. The coefficients of
particular interest are denoted by the vector γ, which is the percent
change in home price with respect to water quality.

Wemeasure proximity to the Bay using a vector of five indicator var-
iables denoting whether a home is located on the Bayfront, or is a non-
Bayfront home within 0 to 500, 500 to 1000, 1000 to 1500, or 1500 to
2000 m of the Chesapeake Bay.14 This specification implicitly includes
a restriction that water quality has no effect on homes more than
2000m from the Bay. Although past papers have found that the implicit
price gradient terminates earlier (Dornbusch and Barrager, 1973;Walsh
et al., 2011b; Netusil et al., 2014), the size and prominence of the Bay
may induce a longer gradient. Within 2000 m, we hypothesize that
the implicit price of water quality declines with distance from the Bay,



Fig. 2. Percent of vacant sales across counties.
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but we do not impose this relationship when estimating the hedonic
regressions.

Measuring proximity to the Bay using discrete “buffers,” or distance
intervals, has the advantage over alternative specifications (such as lin-
ear or inverse distance gradients) in that it allows the influence of Bay
proximity and water quality to vary freely across the Bay proximity
buffer groups. This is particularly important since we are estimating
the hedonic price equations for several different counties (or housing
markets) with a variety of coastal and landscape features, and because
there has been minimal guidance in the literature (with the exception
ofWalsh et al. (2011b) and Netusil et al. (2014)) as to the spatial extent
and shape of this price gradient across differentmarkets andwater bod-
ies. Our functional form follows similar applications in hedonic analyses
of beachwidth, oceanfront access, and tree canopy and streams (Landry
and Hindsley, 2011; Taylor and Smith 2000; Netusil 2005).15

Functional form assumptions and their impacts on implicit price es-
timates are prevalent concerns in the hedonic property value literature
(Cropper et al., 1988; Kuminoff et al., 2010). The semi-log model (Eq.
(2) above) is one of the most commonly assumed functional forms in
the general hedonic literature. However, many studies also employ
water quality variables in their natural log form (Michael et al., 2000;
Gibbs et al., 2002; Walsh et al., 2011b), since the marginal implicit
price of water quality may not be constant over different levels of
water quality. For example, changes in water quality may be more visi-
ble at worse levels of quality.16 More formally:

ln pitð Þ ¼ β0 þHitβ1 þ Litβ2 þ Ttβ3 þ Diβ4 þ Di ln WQiτð Þγþ εit ð3Þ

In Eq. (3), γ can be interpreted as the elasticity of house prices with
respect to water quality. In other words, γ denotes the percent change
in the price of a home due to a 1% change in water clarity, expressed
as KD. The γ parameter in (2), on the other hand, yields the percent
change in price due to a one unit change in KD. For purposes of
15 We also estimated regressions with the linear functional form for distance on each
specification discussed below. The implicit prices for waterfront and non-waterfront
homes were quite similar between the linear and buffer approaches. Additionally, com-
paring adjusted R2 values, the buffer model showedmarginally better fit in 52 of 56 spec-
ifications. To further explore, we split each dataset into 60%/40% subsamples and re-
estimated eachmodel on both. The buffer model again indicated better fit in the vast ma-
jority of estimated models.
16 Unfortunately, a Box\\Cox specification was not a useful guide in selecting the func-
tional form due to the zeros in the interacted water quality/distance terms. To be used
in a Box\\Cox model, a variable's values must be strictly greater than 0.
comparison, we estimate regressions for both (2) and (3) for each of
the 14 counties in the analysis.

Asmentioned above, we also explore the temporal representation of
water quality in the hedonic equation. To probe the issue of the tempo-
ral duration of effects, we use a 3 year average of the spring/summer
water clarity variable in addition to the one year spring/summer aver-
age described above. To be consistent with the other measure, we use
a 3 year average of the spring/summermeasure, sowinter and fall mea-
surements are excluded.17

The hedonic models are estimated separately by county to approxi-
mate separate real estate markets. It is highly unlikely that the 14
countieswe analyze are viewed as one real estatemarket by consumers.
Although the counties in our studymay not perfectly capture individual
real estate markets, they are probably a close approximation. Further-
more, the shared amenities, taxes, school systems and other county ser-
vices represent a natural distinction between areas.

4.2. Spatial Econometric Models

Spatial dependence is an issue in most hedonic analyses. It arises
when the prices or characteristics of nearby homes are more alike
than more distant homes (Anselin and Lozano-Gracia, 2008). There
may also be other geographically clustered omitted variables that are
not easily observable or quantifiable. Although all these influences can
be difficult to represent using traditional methods, nearby home prices
can improve the explanatory power of a regression model (LeSage and
Pace, 2009), and help absorb any residual spatially correlated unob-
served influences, which could otherwise confound the coefficient esti-
mates of interest (Anselin and Lozano-Gracia, 2008).

We employ several spatial econometricmodels to account for spatial
dependence. Since the structure of dependence can vary between
counties, we use amulti-step procedure to identify the appropriate spa-
tial econometric model in each county. The two most common models
in the hedonic literature are the spatial error model (SEM) and spatial
autoregressive (SAR) model (Lesage and Pace, 2009). The SEM allows
for spatial autocorrelation of the disturbance terms,whereas the SAR in-
cludes a spatial lag of the dependent variable (i.e., neighboring home
prices) on the right-hand side of the hedonic equation. Both forms of
spatial dependence can be accounted for using the general spatial
17 The 3 year average is calculated similarly to the 1 year average, so if the home is sold in
June–December, it is assigned the spring/summer average of that year and the previous
two. If it is sold in January–May, it receives the average of the previous 3 years.



Fig. 3. Spring-Summer average light attenuation (KD) in MD Bay counties, 2002.

Table 3
Water clarity in MD Bay counties, March–September 1996–2008.

County
KD mean
(m−1)

KD std. dev
(m−1)

Secchi
depth (m)

Number of unique
interpolator cells

Anne
Arundel

1.91 0.47 0.76 564

Baltimore
county

3.07 1.42 0.47 185

Calvert 1.56 0.86 0.93 149
Cecil 3.07 1.07 0.47 193
Charles 2.60 0.83 0.56 80
Dorchester 1.99 0.75 0.73 186
Harford 3.82 1.23 0.38 26
Kent 3.57 1.50 0.41 115
Prince
George's

3.08 1.20 0.47 57

Queen
Anne's

1.85 1.24 0.78 222

Somerset 2.12 1.00 0.69 116
St. Mary's 1.74 0.73 0.83 102
Talbot 1.42 0.54 1.02 182
Wicomico 3.63 0.78 0.40 138
Average 2.53 0.97 0.64 165.36

Notes: Summary statistics calculated for nearest two grid cells to each property in the
county sales dataset locatedwithin 500m of the Bay. Secchi depthmeasurement calculat-
ed by the formula SDM = 1.45/KD.
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model (referred to as the SAC model in Lesage and Pace, 2009), which
we estimate for each county, as shown below.

P ¼ ρW1P þ β0 þHβ1 þ Lβ2 þ Tβ3 þ Dβ4 þ Qγþ e;
e ¼ λW2eþ u ð4Þ

Letting n denote the number of observed transactions, P is an n × 1
vector of logged sales prices. The vectors previously denoting home
and parcel characteristics, neighborhood attributes, time, and distance
to the Bay, are now represented by the matrices H, L, T, and D, respec-
tively. The elements ofmatrix Q correspond to the interactions between
water quality and distance to the Bay, more formally Dif(WQiτ), where
f(•) could be either linear or logged versions of thewater quality param-
eter. As before, the coefficient vectors to be estimated include βk, for
k = 0,…, 4 and γ.

TheW1 andW2 terms denote row standardized n × n spatial weight
matrices (SWMs) that exogenously define neighbor relations among
observations.When used in a spatial lag term (ρW1P), it produces a spa-
tially weighted average of the home price of neighbors. The SWM in the
error term, W2, defines the dependence among the disturbances. The
n × 1 vector u is assumed to be iid and u ~ N(0,σ2In). The scalars λ and
ρ are spatial coefficients to be estimated.

A variety of SWMs have been used in the literature; we employ four
different variations that define neighbor relations over space and based
on the relative timing of transactions.18 To identify the spatial model
18 Thefirst is the nearest-neighbor specification,where the 20 nearest neighbors (for ex-
ample) are given nonzeroweights based on the inverse distance from the parcel of interest
to each neighbor.We set the number of neighbors to 20, although other larger and smaller
values were used and produced onlyminimal differences. The three other SWMs use var-
iations of the inverse distance SWM, where the number of neighbors given a nonzero
weight is not directly constrained. These variations are intended tomimic the comparable
salesmethod of real estate appraisal. One SWMuses a distance cutoff of 400m, and a time
cutoff of 6 months back and 3 months forward. The next uses a radius of 800 m. The final
SWM is a hybrid approach that applies the 800mboundary and the same time constraints,
but keeps the 10 closest, to prevent irrelevant home sales from entering the SWM. For
background on the comparable sales method, see Appraisal Foundation (2013). Vandell
(1991) describes the comparable sales approach as finding a set of properties that are
“closest” in terms of “time, locational, or structural amenity differences.” Besner
(2002)—who also use a 400 m distance cutoff for a SWM, discusses the importance of
using temporal constraints in SWMs. Similar discussions on comparable sales and model-
ing can also be found in Lentz andWang (1998), and Kummerow and Galfalvy (2002). Fi-
nally, the MD Department of Assessments and Taxation discusses the comparable sales
approach typically used in MD here: http://dat.maryland.gov/realproperty/Pages/
Questions-and-Answers-About-Real-Property-Assessments.aspx.
and SWM combination that is most appropriate for each county, the
SACmodel isfirst runwith all combinations of SWMs. Following recom-
mendations from LeSage and Pace (2009), the model with the highest
likelihood value is selected. Given these models, the spatial coefficients
λ and ρ are examined for statistical significance. If both are significant,
the SAC model is selected as the preferred spatial model. If λ is signifi-
cant but not ρ, the SEM model is used. In the opposite situation the
SAR model is selected.

This approach represents a flexible way to account for the spatial in-
fluences within each county. Based on the results of the spatial regres-
sions, as well as likelihood ratio tests that confirmed the existence of
spatial dependence in every county, the spatialmodel is appropriate be-
cause it addresses spatial dependence among the error terms and/or un-
observed spatially correlated (potentially confounding) price
influences. Results also indicate that the general spatial (SAC) model is
preferred in each county, as the spatial error and lag coefficients were
both significant in all counties.19,20
5. Hedonic Regression Results

5.1. One Year Model

To simplify our discussion, we start with the model that uses the
1 year KD variable in natural-log form in Table 4, which presents the
water quality-related coefficient estimates for all 14 Maryland Bay
counties.21 As depicted in Eq. (3), ln(KD) is interactedwith dummy var-
iables denoting whether a home is located on the waterfront, or is non-
19 For the preferred spatial weights matrices, all counties use the 20 nearest neighbor
specification for the spatial lag term. For the spatial error term, Baltimore, Prince George's,
and Somerset Counties favored the SWM that uses a distance radius of 800 m. All other
counties use the same distance boundary, but with the additional restriction that only
the nearest 10 observations are kept. All SWMs use temporal boundaries of 6months back
and 3 months forward.
20 Since W2 defines neighboring sales based on distance over space and the relative
timing of sales, our models account for spatio-temporal autocorrelation among the error
terms. However, as recommended by an anonymous reviewer, there are alternative
models to address spatial autocorrelation, particularly over longer timer periods. Kelejian
and Prucha (2010) highlight this issuewhile developing the theoretical implications of the
general spatial two-stage least squares (GS2SLS) model, and find that model to have sev-
eral superior qualities. Unfortunately, that model is not yet implementable for large
datasets (so cannot be used for many of our counties) and current programs are unable
to deal with datasets involving multiple transactions of the same parcel (Ateya et al.,
2013).
21 For an expanded example, the full set of estimated coefficients for Anne Arundel
County are posted online in a previous working paper version: http://yosemite.epa.gov/
ee/epa/eed.nsf/WPNumber/2015-07?OpenDocument.

http://dat.maryland.gov/realproperty/Pages/Questions-and-Answers-About-Real-Property-Assessments.aspx
http://dat.maryland.gov/realproperty/Pages/Questions-and-Answers-About-Real-Property-Assessments.aspx
http://yosemite.epa.gov/ee/epa/eed.nsf/WPNumber/2015-07?OpenDocument
http://yosemite.epa.gov/ee/epa/eed.nsf/WPNumber/2015-07?OpenDocument


22 Both of these Counties have unique aspects that may be worth exploring in future re-
search. Calvert County is the smallest MD County, and is just one long peninsula between
the Bay and the Patuxent River, around 14 km wide. Prince George's County only has a
small amount of water frontage on the Potomac River, so effects beyond the waterfront
may be confounded by other influences.
23 In that paper,we conduct a RandomEffect-Size (RES)meta-regression of the elasticity
of the water quality variable on socioeconomic and ecological covariates and our econo-
metric model specification. Because the RES model weights the elasticity by the inverse
variance of the estimate as well as the estimated between-study variance across counties,
significant elasticity estimates are given greater weight than insignificant elasticity esti-
mates. In other words, we control for significance andmodel choice. The counties in these
regressions that consistently have significant water quality variables, such as Anne
Arundel, Baltimore County, Calvert, Dorchester, Harford, Kent, and Talbot, are in areaswith
a history of boating and high boat ownership, and hence water-based recreation. Other
counties are more rural and have less water-based activities. Some of this can be seen in
the summary statistics with the % waterfront homes measure. Unfortunately, data on
things like local boat ownership and local recreation are only available at aggregate levels,
such as the county, so cannot be incorporated into the home-specific regressions.

Fig. 4. Spring-Summer average light attenuation (KD) in MD Bay counties, 2003.
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waterfront and within one of the Bay proximity buffers. As there was
only limited significance beyond 1000m, the Table contains coefficients
out to that buffer.

For the RHS variables not included in the table, in general the signs
on these variables are as anticipated and they are mostly statistically
significant. An expected suite of characteristics improve a home's
value, including the interior square footage, a basement, a garage or car-
port, higher education level in the Census block group, and, importantly,
a waterfront location. The age of the home, townhouses (relative to sin-
gle-family homes), increased residential density, and an industrial set-
ting are all negatively correlated with home prices. A few variables,
such as land area, number of bathrooms, median household income in
the block group, proportion of families below the poverty line, and
housing vacancy have mixed results across counties. The R-squared
values range from approximately 0.7 to 0.9, suggesting a fairly good sta-
tistical fit in all counties.

The coefficient estimates corresponding to the interaction term
between ln(KD) and the waterfront buffer are negative in 10 of the
14 counties (indicating a positive impact of water clarity since KD is
inversely related); of those, seven are statistically significant.
Among these seven counties, the spatial Bayfront coefficient esti-
mates range from −0.03 to −0.16. In these double-log models, the
coefficient estimates can be interpreted as elasticities, so a 10% de-
crease in KD (an improvement in clarity) would be expected to
yield approximately a one third to a one and a half percent increase
in waterfront home values across these seven counties. In the four
counties with positive waterfront-KD interaction terms, none of the
coefficients are significant.

Turning to the non-waterfront results, the magnitude of the price
impact generally declines at farther distances from the Bay, as one
might expect. However, there is considerable heterogeneity across
counties. For example, Anne Arundel and Charles demonstrate a price
gradient extending out to 2 km and 1.5 km, respectively. In other
counties, this negative price impact does not extend beyond Bayfront
homes (e.g., Dorchester, Kent, Talbot), or there is no monotonic trend
with distance.

Focusing on non-waterfront homes within 0 to 500 m, in three
counties increases in KD have a negative and statistically significant
impact on residential property prices, with a smaller range of im-
pacts from 0.02–0.06. Seven additional counties show a negative
but statistically insignificant effect. Mixed results are also found in
the farther distance buffers. This is not necessarily surprising since
landscape features and the density of homes vary across counties.
The previous journal articles to find price gradients extending past
waterfront homes (Walsh et al., 2011b; Netusil et al., 2014) studied
urban areas, probably most similar to Anne Arundel County. The
500–1000 distance buffer has six significant estimates, with two of
them yielding counter-intuitive signs.22

In an extension paper, Klemick et al. (2016) investigated the
sources of variation in the water quality coefficients across counties
and distance buffers using a series of meta-regressions.23 They con-
sidered several environmental and socioeconomic covariates as po-
tential variables explaining the spatial heterogeneity in the home
price premium associated with proximity to clearer water. They
found that two factors are significantly associated with a higher
price premium for clear water across counties: median home value
and proximity to shallow water (no more than 1.5 m deep). The re-
sult that water clarity is more important to homebuyers in wealthier
counties with higher home values in not surprising. The finding that
clarity matters more for properties in counties adjacent to shallow
water might be explained by the fact that boat docks typically re-
quire water of at least 1.5 m. If residents are more likely to dock
boats at properties with deeper water, local water quality is less im-
portant since they can travel easily to other parts of the Bay for rec-
reation. The effect of median home value on the value of water
clarity is more pronounced for waterfront homes than for homes far-
ther from the water, while the effect of water depth is roughly the
same for both waterfront and non-waterfront homes.

Table 5 shows the estimated implicit prices for a 10% increase in
light attenuation (KD) for the model that uses the natural log of the
one year average of spring/summer KD. This 10% change translates
into roughly a 4 to 10 cm decrease in SDM, depending on the loca-
tion, where the actual changes in KD appear in the final column of
the table. Among waterfront homes, this 10% decrease in water
clarity can lead to declines in property values by as much as
$26,497 (in Talbot County), or as low as $2576 in Calvert County.
The price premium for a 10% improvement in light attenuation in
the 0–500 m buffer is smaller in magnitude, with implicit prices
up to $3233 in Queen Anne's County, but generally smaller and
less significant.
5.2. Alternate Models

We now proceed to some of the additional models we considered.
First, the second set of values in Table 4 contains the results of the
models that use KD in levels instead of logs. Although there is general
agreement in sign and significance with most of the previous results,
there are some notable differences. Calvert County's waterfront coeffi-
cient is no longer significant, while St. Mary and Charles Counties'
now are. Calvert County has relatively better water clarity (lower light
attention) thanmost other counties in the data set, while Charles Coun-
ty has about average clarity, so forcing the relationship between KD and
price to be linear may be worse in that County. St. Mary's County has a



Table 4
Regression results: 1 year (Spring/Summer) average.⁎⁎⁎

One year ln(KD) One year KD

Waterfront 0–500 m 500–1000 m R2 Waterfront 0–500 m 500–1000 m R2

Anne Arundel −0.126⁎⁎⁎ −0.023⁎⁎⁎ −0.009 0.755 −0.0585⁎⁎⁎ −0.0249⁎⁎⁎ −0.0089⁎⁎ 0.789
Baltimore county −0.090⁎⁎⁎ 0.009 −0.015⁎ 0.781 −0.0293⁎⁎⁎ 0.0032⁎ −0.0060⁎⁎⁎ 0.736
Calvert −0.033⁎ 0.001 0.021⁎ 0.839 −0.0088 0.0174⁎⁎⁎ 0.0196⁎⁎⁎ 0.783
Cecil 0.010 −0.001 0.003 0.803 0.0024 0.0086⁎ 0.0012 0.771
Charles −0.058 −0.056⁎⁎ −0.107⁎⁎⁎ 0.796 −0.041⁎⁎ −0.0252⁎⁎⁎ −0.0335⁎⁎⁎ 0.710
Dorchester −0.078⁎ −0.008 −0.013295 0.820 −0.0557⁎⁎ −0.0076 −0.0079 0.796
Harford −0.096⁎⁎⁎ 0.001 0.012 0.907 −0.0243⁎⁎⁎ 0.0022 −0.0022 0.860
Kent −0.142⁎⁎⁎ 0.008 0.002 0.828 −0.0289⁎⁎ 0.0120 0.0049 0.811
Prince George's −0.062 −0.001 0.022⁎⁎ 0.772 −0.0093 −0.0018 −0.0023 0.699
Queen Anne's 0.017 −0.060⁎⁎⁎ −0.068⁎⁎⁎ 0.824 −0.0151 −0.041422⁎⁎⁎ −0.0470⁎⁎⁎ 0.775
Somerset −0.091 −0.055 −0.141⁎⁎⁎ 0.721 −0.0300 −0.0207 −0.0498⁎⁎⁎ 0.705
St Mary's 0.014 −0.015 0.017 0.803 0.0375⁎ −0.0082 0.0115 0.750
Talbot −0.156⁎⁎⁎ −0.014 −0.031 0.859 −0.0631⁎⁎⁎ −0.0122 −0.0190 0.845
Wicomico 0.046 −0.015 −0.010 0.847 −0.0018 −0.0130⁎ −0.0116 0.837

⁎⁎⁎ , ⁎⁎, and ⁎ denote significance at the 99%, 95%, and 90% levels, respectively.
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positive coefficient, counter to expectations, which is significant at the
10% level in this model. Previous work in St. Mary's County (Poor et
al., 2007) noted the confounding impact of a large military base,
which is the largest employer as well as the location of significant im-
pervious surface—which is negatively related to water quality (Poor et
al., 2007). Although we use a variable indicating distance to the nearest
gate of the base (as done in Poor et al. (2007)), it may be better to em-
ploy different water quality variables in this county (Poor et al. used
stormwater-related variables).

Table 6 contains the results of themodels that use 3 year averages
of (spring/summer) water clarity. The waterfront coefficients are
now much larger, on average. In some areas, these are implausibly
large, with Charles County having an elasticity of 0.64, so that a
10% improvement in clarity is associated with a 64% increase in
home price. The first column of values contains the coefficients for
the model with logged KD, where the waterfront coefficients for Dor-
chester and Kent Counties are no longer significant, while Wicomico
Table 5
Implicit price estimates for a 10% increase in KD.(2010$).

1 year ln(KD) Distance from shore Mean 10% change

County Waterfront 500 1000 KD

Anne Arundel −20,001.0⁎⁎⁎ −1604.7⁎⁎⁎ −544.5 0.1919
(2946.4) (528.1) (634.5)

Baltimore −4247.1⁎⁎⁎ 217.8 −296.6⁎ 0.3284
(724.8) (161.2) (163.8)

Calvert −2575.9⁎ 18.8 847.1⁎ 0.1764
(1424.0) (406.7) (434.3)

Cecil 888.3 −52.6 123.5 0.2979
(3340.2) (542.4) (629.7)

Charles −3055.6 −2159.2⁎⁎ −3572.1⁎⁎⁎ 0.2775
(2760.4) (1016.1) (977.4)

Dorchester −5289.3⁎ −215.3 −321.1 0.209
(3205.7) (970.5) (904.6)

Harford −6399.6⁎⁎⁎ 43.8 463.0 0.3735
(1993.1) (369.0) (377.7)

Kent −12,589.4⁎⁎⁎ 302.5 81.9 0.3755
(3473.7) (1183.5) (1210.8)

Prince George's −5058.6 −27.3 849.1⁎⁎ 0.3287
(5230.1) (564.1) (413.8)

Queen Anne's 2263.5 −3232.6⁎⁎⁎ -3337.4⁎⁎⁎ 0.1923
(2829.3) (815.9) (916.2)

Somerset −2968.9 −999.8 −1996.6⁎ 0.2188
(2001.0) (837.4) (658.2)

St. Mary's 942.7 −586.6 656.6 0.1692
(2373.0) (883.0) (969.3)

Talbot −26,497.2⁎⁎⁎ −949.6 −1912.4 0.1688
(6460.6) (1971.8) (2170.2)

Wicomico 3671.9 −515.1 −273.0 0.3644
(5235.3) (818.5) (674.5)

Standard errors appear in parentheses.
and Queen Anne's Counties now have significant waterfront coeffi-
cients of the expected sign. Additionally, Talbot County, which has
a large number of valuable waterfront homes and had the highest
implicit price in Table 5, no longer has a significant waterfront
coefficient.

In addition, The Table also illustrates much different behavior be-
yond the waterfront, with 6 counties now having positive and signifi-
cant coefficients at the 0–500 m buffer. These results could indicate
that these longer term measures are capturing more than just the im-
pact of water clarity, and may, at least partially, reflect very local trends
in the housingmarket that are not captured by our county-wide annual
time dummies.

Finally, the second column of Table 6 contains results from the last
model that uses a 3 year average of spring/summer non-logged KD. Sim-
ilar to the first column of ln(KD) results, the average waterfront coeffi-
cients here are also usually larger than the parallel one year averages.
The non-waterfront results also include several counterintuitive (posi-
tive and significant) results, again raising questions about the robust-
ness of the 3 year average water quality measure, particularly for non-
waterfront homes. The Klemick et al. (2016) meta-regression analysis
again found that median home value and water depth help explain
the varying results across counties for the three-year measure of
water quality.

To better compare across specifications, the remaining implicit
prices are presented in Table 7. While the size of the implicit prices for
the 1 year KDmodel are roughly comparable to those in Table 5, the im-
plicit prices for some of the 3 year models are considerably larger. Anne
Arundel County's waterfront implicit price is approximately $50,000
dollars in both 3 year models, compared to around $17,000–$20,000
in the 1 year models. Charles County goes from approximately $3000
and insignificant to $29,000 and significant in the 3 year ln(KD) model.
On the other hand, the implicit prices for Baltimore and Calvert Counties
stay fairly consistent. Overall, the differences in magnitude between
these differences in functional form could induce different recommen-
dations in a benefit-cost policy context, similar to the findings of
Michael et al. (2000).

The much larger average implicit prices from the 3 year models are
troubling, since the longer averages may allow for additional omitted
variable bias, as compared to the one year averages. Furthermore,
weather patterns and other events can induce wide variation in clarity
across years, so that a 3 year averagemay deviate fromwhat a potential
homeowner actually sees when they visit the property. The Klemick et
al. (2016) meta-analysis examined differences caused by the functional
form variations in these hedonic regressions. They found that the bene-
fit transfers based on the 3 year models exhibit larger confidence inter-
vals and larger transfer errors than the 1 year models, further
supporting the use of the one year averages.



Table 6
Coefficients from models with 3 year KD averages.

3 year ln(KD) 3 year KD

Waterfront 0–500 m 500–1000 m R2 Waterfront 0–500 m 500–1000 m R2

Anne Arundel −0.3058⁎⁎⁎ −0.1020⁎⁎⁎ −0.0123 0.789 −0.1660⁎⁎⁎ −0.0586⁎⁎⁎ −0.0103⁎ 0.789
Baltimore County −0.05560⁎⁎⁎ 0.0386⁎⁎⁎ −0.0077 0.736 −0.0191⁎⁎⁎ 0.0117⁎⁎⁎ −0.0015 0.736
Calvert 0.0134 0.0779⁎⁎⁎ 0.0653⁎⁎⁎ 0.783 −0.0133 0.0247⁎⁎⁎ 0.0237⁎⁎⁎ 0.783
Cecil −0.0010 0.1257⁎⁎⁎ 0.0362 0.771 −0.0023 0.0329⁎⁎⁎ 0.0128 0.771
Charles −0.6413⁎⁎⁎ −0.1764⁎⁎ −0.3021⁎⁎⁎ 0.710 −0.2421⁎⁎⁎ −0.0670⁎⁎⁎ −0.1037⁎⁎⁎ 0.0.711
Dorchester −0.0607 0.0429 0.0053 0.796 −0.0309 0.0284 0.0040 0.796
Harford −0.2600⁎⁎⁎ 0.0213 0.0370⁎⁎ 0.861 −0.0760⁎⁎⁎ 0.0066 0.0109⁎⁎ 0.861
Kent −0.0745 0.1147⁎⁎⁎ 0.1083⁎⁎ 0.811 −0.0277⁎ 0.0349⁎⁎ 0.0306⁎⁎ 0.812
Prince George's 0.0090 −0.1411⁎⁎⁎ −0.1427⁎⁎⁎ 0.700 0.0227 −0.0399⁎⁎⁎ −0.0439⁎⁎⁎ 0.699
Queen Anne's −0.1310⁎⁎⁎ −0.1838*** −0.1983⁎⁎⁎ 0.775 −0.0402⁎⁎⁎ −0.0633⁎⁎⁎ −0.0664⁎⁎⁎ 0.775
Somerset −0.0839 −0.0632 −0.1635⁎⁎⁎ 0.705 −0.0547⁎ −0.0499⁎⁎ −0.0761⁎⁎⁎ 0.705
St Mary's 0.1265⁎⁎⁎ 0.0855⁎⁎⁎ 0.1324⁎⁎⁎ 0.751 0.0839⁎⁎⁎ 0.0476⁎⁎⁎ 0.0665⁎⁎⁎ 0.751
Talbot −0.0793 0.1082⁎⁎ 0.0984 0.846 −0.0473 0.0149 0.0226 0.845
Wicomico −0.0751⁎⁎⁎ −0.0869⁎⁎ −0.0878⁎⁎ 0.837 −0.0053 −0.0187 −0.0190 0.837

***, **, and * denote significance at the 99%, 95%, and 90% levels, respectively.
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6. Conclusions

The Chesapeake Bay area has a long history of water-related culture
and recreation, involving boating, fishing, and a range of other exploits.
To the extent that these activities are bundled with local housing deci-
sions, affected water quality should be capitalized into home prices.
This study conducts the largest hedonic analysis of water quality ever
undertaken, using over 225,000 property sales across fourteen Mary-
land counties. These data are combined with spatially explicit water
clarity data, as well as an extensive set of other home, neighborhood,
socio-economic, and location-based characteristics. These data are ex-
plored using a variety of econometric models and specifications.

For our specification that uses the log of water clarity averaged over
the spring and summer of the sale year, which best represents the most
common functional form in past literature, we find a positive impact of
water clarity on waterfront property prices in ten of the 14 counties,
seven of which are statistically significant. In the four other counties,
the waterfront impact was insignificant. Although the results are more
mixed in the non-waterfront areas, we still find evidence that the im-
pact of water quality stretches past the waterfront.

We explore several different representations of water clarity during
estimation,with emphasis on the length of the temporal average and al-
ternative functional forms. Although similar hedonic analyses of air
quality have focused on the spatial extent of averaging (Anselin and
LeGallo, 2006), there has beenmuch less attention on temporal aspects.
Only one other paper investigates this issue in the water quality litera-
ture (Michael et al., 2000). We compare a 3 year average of spring and
summer water quality to a one year average, which is much more
Table 7
Implicit prices for 1 year KD, 3 year KD, and, 3 year ln(KD) models.

1 year KD 3 year KD

Waterfront 0–500 m 500–1000 m Waterfront

Anne Arundel −16,506.9⁎⁎⁎ −1356.6⁎⁎⁎ −647.3 −50,662.4⁎⁎⁎

Baltimore County −4375.3⁎⁎⁎ 192.4 −279.8⁎ −4871.9⁎⁎⁎

Calvert −4053.5⁎⁎⁎ −295.7 477.2 −5678.8⁎⁎⁎

Cecil 860.2 −251.3 210.3 −4275.6
Charles −3462.7 −2408.6⁎⁎⁎ −3253.1⁎⁎⁎ −27,258.3
Dorchester −3900.6 90.1 −427.5 −2449.5
Harford −5680.8⁎⁎⁎ 283.4 544.1 −19,064.3⁎⁎⁎

Kent −12,990.8⁎⁎⁎ 763.8 73.8 −15,041.7⁎⁎⁎

Prince George's −3019.2 18.8 876.5⁎⁎ −9627.6⁎⁎⁎

Queen Anne's 378.1 −2882.6⁎⁎⁎ −2759.3⁎⁎⁎ −1751.2
Somerset −2332.7 −1161.0 −1489.9⁎⁎⁎ −2803.1
St Mary's 2286.4 −520.1 691.7 4588.4⁎⁎

Talbot −19,288.8⁎⁎⁎ −1439.6 −2017.6 −18,594.1⁎⁎⁎

Wicomico 4875.1 −670.3 −525.7 17,988.2⁎⁎
prevalent in the literature. Results indicate that the 3 year averages
yield larger estimates (implausibly large in some cases), although they
are much more variable. Beyond the waterfront, the 3 year averages
are characterized by counterintuitive signs and magnitudes, suggesting
that the broader temporal windowmay capture more than just the im-
pact of water quality.

Utilizing our sizable dataset, we find significant price impacts for
water quality across multiple property markets in Maryland. Since al-
most all past hedonic papers on water quality focus on narrow areas,
such as a county or municipality, we believe this provides a broader
look at the wider potential impacts of water quality, or conversely
water pollution, on home prices in other areas. There have been a
wealth of local, state, and federal water quality regulations passed in re-
cent years. In the benefit-cost analyses of these rules, there has been no
use of hedonic property price analysis, which is partly due to the narrow
geographic scope of the previous literature. Our results suggest that
property price impacts may represent an important benefit category
to be considered in future regulatory analysis. Furthermore, existing ef-
forts to improvewater quality, such as the Chesapeake Bay TMDL, could
yield significant benefits to local property owners.
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3 year ln(KD)

0–500 m 500–1000 m Waterfront 0–500 m 500–1000 m
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