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Abstract This study conducts a meta-analysis and benefit transfer of the value of water
clarity in the Chesapeake Bay estuary to estimate the property value impacts of pollution
reduction policies. Estimates of the value of water clarity are derived from separate hedo-
nic property value analyses of 14 counties bordering the Bay. The meta-analysis allows us
to: (1) estimate the average effect of water clarity in the Chesapeake Bay, (2) investigate
heterogeneity of effects across counties based on socioeconomic and ecological factors, (3)
evaluate different measures of water clarity used in the original hedonic equations, and (4)
transfer the values to Bayfront counties in nearby jurisdictions to estimate the property value
impacts of the total maximum daily load (TMDL), a policy to reduce nutrient and sediment
pollution entering the Bay that is expected to improve water clarity and ecological health.
We also investigate the in-sample and out-of-sample predictive power of different transfer
strategies and find that a simpler unit value transfer can outperform more complex func-
tion transfers. We estimate that aggregate near-waterfront property values could increase by
roughly $400–$700million in response to water clarity improvements from the TMDL.
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Estuaries provide essential habitat for coastal and marine species globally. Many of the
world’s largest cities are located adjacent to estuaries, which makes these transition zones
particularly vulnerable to degradation from human activities. At the same time, this prox-
imity provides local residents with a host of ecosystem services, from food production to
recreational opportunities to aesthetic values. Residents living on or near the waterfront are
well-positioned to benefit from these ecosystem services, as reflected in price premiums for
homes located near estuaries (Knight Frank 2014). Hedonic property value analysis thus
offers a useful tool for researchers looking to quantify the value of estuary cleanup efforts.

TheChesapeakeBay is one of the largest estuariesworldwide and is adjacent to population
centers in three US states—Maryland, Virginia, and Delaware—and the District of Columbia
(DC). Urban and suburban development and agricultural runoff, along with fish and shellfish
disease and over-harvesting, degraded water quality in the Bay and its tidal tributaries during
the 20th century. Since the 1980s, the Chesapeake Bay has been the focus of numerous
restoration efforts. Due to limited progress, President Obama issued a 2009 Executive Order
calling for federal leadership to advance Bay restoration. In 2010, the U.S. Environmental
Protection Agency (EPA) and all Bay watershed states agreed to a Total Maximum Daily
Load (TMDL), or “pollution diet,” to meet target reductions in nitrogen, phosphorus, and
sediment by 2025 (EPA 2013a). These pollution reduction targets were developed to attain
goals for water clarity, chlorophyll a, and dissolved oxygen, three ecological indicators that
are critical to aquatic grasses, fish, and other wildlife in the Chesapeake Bay (EPA 2013a).

Such water quality issues are present in estuaries and other waterbodies worldwide,
spurring similar policies. For example, the European Union and Member States have estab-
lished management plans to address pollution in over 100 river basin districts, which include
estuarine waters (European Commission 2010). Similar to the Chesapeake Bay, agricultural
runoff and urban sewer overflows are the primary concerns (European Commission 2015).
Efforts are guided by the EU’s Water Framework Directive and Marine Strategy Framework
Directive, which have the goal of achieving “good” ecological status for all waters.1

This study seeks to estimate the change in property values from water clarity improve-
ments due to the Chesapeake Bay TMDL. In order to estimate this impact, we use a novel
dataset to consider several related research questions. First, what is the effect of Chesapeake
Bay water clarity on home prices, and how does this effect change with distance from the
waterfront? Next, is the effect of water clarity on home prices heterogeneous across property
markets surrounding the Bay? If so, what characteristics explain this heterogeneity? Finally,
what benefit transfer approach is most appropriate to estimate home price impacts from
improvements in water clarity in areas of the Bay where original hedonic price estimates are
unavailable?

To address these questions, this study performs a meta-analysis of 70 estimates of the
value of water clarity derived from a related study that conducted hedonic analyses of home
sales in 14Maryland counties (Walsh et al. 2015). This study then conducts a benefit transfer
of these values to DC, Delaware, Virginia, and four additional counties in Maryland (Fig. 1).
Meta-analysis involves synthesizing multiple estimates, typically across several studies. In
this case we undertake an “internal meta-analysis” (Banzhaf and Smith 2007; Kuminoff et al.
2010), synthesizing the results from Walsh et al. (2015).

Before delving into our analysis, we discuss the use of meta-analysis for benefit transfer
in past literature and summarize the Walsh et al. hedonic property value study. We then use
meta-analysis to derive the mean effect on home prices of light attenuation (KD)—ameasure

1 For additional information, see http://ec.europa.eu/environment/pubs/pdf/factsheets/water-framework-
directive.pdf
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of water clarity—which provides point estimates for use in a unit value benefit transfer. Next,
we estimate a series ofmeta-regressions to explain the heterogeneity in property value impacts
across counties. These results allow us to conduct a benefit function transfer and examine
the effect of different water clarity measures on the hedonic estimates. We compare simpler
versus more complex benefit transfer strategies and find that simple unit value transfers
outperform more complex function transfers.

We combine our estimates of the value of water clarity with projections of the improve-
ment in clarity anticipated under the TMDL to calculate the total property value impacts
in Maryland, Virginia, Delaware, and DC. We find that aggregate near-waterfront property
values could increase by roughly $400–$700million. The results illustrate the usefulness of
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meta-analysis and the challenges of benefit transfer evenwhen the estimates being transferred
represent a common valuation measure, geographic area, environmental attribute, and policy
instrument.

1 Previous Meta-analysis and Benefit Transfer Applications

There have been numerousmeta-analyses in the environmental economic literature, including
applications to air pollution, water quality, endangered species and biodiversity, recreation,
land contamination, and mortality risks. Nelson and Kennedy (2009) analyzed 140 meta-
analyses in environmental and resource economics, over half of which have been published
since 2004. Most previous meta-analyses of the value of surface water quality have focused
on estimates derived from stated preference and recreation demand studies (Johnston et al.
2003, 2005; Van Houtven et al. 2007; US EPA 2006, 2009, 2010b, 2013b), though a recent
working paper also included estimates from hedonic property value studies (Ge et al. 2013).
Several meta-analyses have used hedonic estimates in the context of other environmental
commodities (Smith and Huang 1993, 1995; Nelson 2004; Messer et al. 2006; Debrezion
et al. 2007; Kiel and Williams 2007; Mazzotta et al. 2014).

Despite the extensive use of meta-analysis in environmental economics, Nelson and
Kennedy note several common issues plaguing studies, including sample collection, data
and treatment heterogeneity, and dependence among observations from the same primary
study. Nelson and Kennedy (2009), Stapler and Johnston (2009), Borenstein et al. (2010),
Boyle et al. (2013) and Nelson (2013) provide guidance for best practices when conducting
meta-analysis and benefit transfer. Leon-Gonzalez and Scarpa (2008) propose a Bayesian
alternative to traditional benefit function transfer that emphasizes selecting the appropriate
subset of study sites for transferring to a policy site in order to improve the efficiency of
estimates and determine when original benefit transfer is a robust alternative to original data
collection.2

A major issue with any benefit transfer is the degree of consistency between the original
studies and the new policy context. Important areas for consistency include the type of
environmental amenity and metric used to quantify it, baseline conditions and magnitude
of the environmental change, and socioeconomic characteristics of the populations (EPA
2010a). If multiple original studies are used to develop the estimates, consistency among
the studies in terms of the outcome variable and valuation method is also important (Smith
and Pattanayak 2002; Bergstrom and Taylor 2006), though studies using Bayesian techniques
have demonstrated efficiency gains from pooling estimates across different welfare measures
and contexts (Johnston and Moeltner 2014; Moeltner and Rosenberger 2014).

The meta-analysis and benefit transfer conducted here avoids many of these issues. In our
study, the original estimates and the target area for benefit transfer focus on the same outcome
variable, environmental amenity, region, and policy change. The states directly bordering
the Chesapeake and tidal tributaries all fall within the mid-Atlantic region of the US and
share similar socioeconomic and environmental characteristics. The analyses also employ

2 The BayesianModel Averaging technique is most useful when there are some data on the willingness to pay
values for the sites to which values are being transferred. In this case, we do not have these data for counties
in DC, Delaware, Virginia, and the four additional counties in Maryland. Leon-Gonzalez and Scarpa (2008)
provide a method and assumptions for a case in which no data exists for these counties which could be used
in an extension to this work, but is beyond the scope of this paper.
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the same data sources and methods. This methodological homogeneity ensures consistency
in the estimates, grounded in the hedonic property model (Rosen 1974).3

2 Property Value Impacts of Chesapeake Bay Water Clarity in Maryland

Primary estimates for this meta-analysis come from an original property value study of
water clarity in Maryland (Walsh et al. 2015). The authors estimated separate hedonic price
functions for 14 Maryland counties bordering the Chesapeake Bay and its tidal tributaries,
using a dataset of over 200,000 residential property transactions and water quality from 1996
to 2008. The authors used an expansive set of controls to represent home, neighborhood, and
other characteristics that influence a home’s value.

Water quality was represented in the regressions by a measure of water clarity: the water-
column light attenuation coefficient, or KD, which is essentially the inverse of water clarity
(i.e., higher light attenuation is equivalent to cloudier water). The analysis focused on water
clarity for three reasons: its ecological significance as a determinant of aquatic grass habitat
in the study area, its policy relevance given the water clarity criteria established under the
TMDL, and its salience to homeowners. These data were provided by EPA’s Chesapeake
Bay Program, which collects monitoring data twice a month and interpolates the data to
produce a spatial grid of cells with a maximum size of 1 km2 that covers the entire Bay and
tidal tributaries. The authors matched each home sale to average KD over the two nearest
grid cells during the most recent spring and summer (termed “1-year average KD”), when
algae blooms are most common and clarity is poor. They also used a measure that averaged
spring and summer KD over the most recent 3years as a longer-term indicator of water clarity
(termed “3-year average KD”). Comparing the 1- and 3-year averages gives some indication
of whether the persistence or variability of water clarity over time could be important to
homebuyers in addition to mean water clarity.4

The hedonic property value equation posits that the price of a home is a function of its
individual attributes, including characteristics of the home and parcel (Hit), as well as its
location and neighborhood (Lit). Distance to the Chesapeake Bay tidal waters (Dit) and local
Bay water clarity levels (WQit ), represented by KD, are of particular interest. Di is a vector
of dummy variables denoting different distance buffers to the waterfront, namely whether
a home is on the waterfront or is non-waterfront and within 0–500; 500–1000; 1000–1500;
or 1500–2000m from the Bay. Interacting these terms with WQit allows for estimation of
separate water clarity coefficients for each distance buffer. The price (pit ) of home i sold in
period t was estimated as:

ln(pit ) = β0 + Hi tβ1 + Li tβ2 + Ttβ3 + Diβ4 + Di ln(WQit )γ + εi t (1)

where Tt is a vector of year and quarter indicator variables to control for broader trends and
seasonal cycles in the housingmarket. The dependent variable ln(pit ) is the natural log of the
price of home i sold in period t , and εi t is an error term. A general spatial model with spatial
error and autoregressive terms was used to account for spatial dependence among the prices
of nearby properties (LeSage and Pace 2009). Hedonic models were estimated separately by

3 The measure of interest in this study is the price elasticity of houses with respect to water clarity. Such
capitalization effects may not necessarily be interpreted as formal welfare measures unless several conditions
are met. See Kuminoff and Pope (2014) for details.
4 A limitation of our study is that we do not explicitly estimate the effect of the variance of water clarity on
home prices because projections of water clarity variability are not available from the water quality models
that provide the basis for the TMDL policy analysis (Keisman and Shenk 2013; Wang et al. 2013).
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Fig. 2 KD elasticity values and statistical significance in hedonic counties. Waterfront buffer (a), 0–500m
buffer (b), 500–1000m buffer (c)

county to approximate separate real estate markets. While county administrative boundaries
may not perfectly delineate real estate markets, counties represent a natural segmentation in
this region due to common property tax rates and amenities. In particular, school districts in
Maryland are run at the county level.5

The coefficients estimated were β0,β1,β2,β3,β4 , and of particular interest, γ. In this
specification, γ can be interpreted as the elasticity of home prices with respect to 1-year
average KD. The authors also considered three other specifications for the water clarity term:
the log of 3-year average KD, as well as 1- and 3-year average KD entered linearly.

Figure 2 displays the pattern of the regression results across counties for the waterfront,
0–500, and 500–1000m buffers for one illustrative specification—the log of 1-year average
KD. Panel a shows that the coefficients for the waterfront buffer are negative in ten of the 14
counties; of those, seven are statistically significant (p value <0.10). Since KD is inversely
related to water clarity, a negative coefficient is expected and indicates that home prices
decline as light attenuation increases. None of the positive waterfront coefficients are statisti-
cally significant. Among the seven counties with significant coefficients, the estimates range
from −0.033 to −0.156. The coefficients can be interpreted as elasticities, so a ten percent

5 We rejected the hypothesis that all counties in the analysis can be pooled in a single model with dummy
variables for counties but a single coefficient for each of the other explanatory variables across counties using
a likelihood ratio test (p < 0.000). We also estimated a model pooling only counties that fall within the same
Metropolitan Statistical Area (MSA). MSAs are small groups of contiguous counties with overlapping labor
markets, as defined by the US Office of Management and Budget (OMB Bulletin No. 15-01, 2015, “Revised
Delineations ofMetropolitan Statistical Areas,Micropolitan Statistical Areas, andCombined Statistical Areas,
and Guidance on Uses of the Delineations of These Areas.” https://www.whitehouse.gov/sites/default/files/
omb/bulletins/2015/15-01.pdf). We rejected the hypotheses that coefficient estimates for the explanatory
variables can be held constant across counties within each of the three MSAs that include multiple counties
in our study area (p < 0.000). Together these results suggest that counties are appropriate for distinguishing
separate housing markets in this region.
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decrease in 1-year average KD (an improvement in clarity) yields a 0.33–1.56% increase in
waterfront home values across these counties.

For non-waterfront homes within 0–500m of the Bay, increases in KD have a negative
and statistically significant impact on property prices in three counties, and seven additional
counties have a negative but statistically insignificant effect (panel b). The magnitude of the
coefficient estimates is smaller in absolute value than those in the waterfront buffer, with
significant coefficients ranging from −0.023 to −0.06. Results are mixed in the 500–1000m
buffer; four counties have negative and significant coefficients, and two counties have small
positive and significant coefficients (panel c).

These results demonstrate that the impact of water clarity on home prices varies from
county to county, sometimes extending beyond waterfront homes. In general, the magnitude
of the price impact declines with distance from the Bay. Mixed results are also found in the
remaining distance buffers. This is not necessarily surprising since landscape features and
the density of homes varies across counties. The results for the other three specifications of
water clarity are qualitatively similar.

3 Estimating the Effect of Water Clarity on Home Prices Using
Meta-analysis

This section delves into our key research questions by assessing the effects of water clarity
on home prices from the hedonic analysis in Walsh et al. (2015) and testing whether the
estimated elasticities vary significantly across counties and with distance from the shore. For
each county included in the hedonic analysis, we have estimates of the property value impact
of water clarity at five different distances from the Bay: waterfront, and non-waterfront within
500, 500–1000, 1000–1500, and 1500–2000m of the shore, yielding a total of 70 estimates.
We synthesize the hedonic results across counties by calculating the unweighted andweighted
means of the elasticities of KD for each distance buffer. These elasticity measures represent
the percent change in home value from a one percent change in light attenuation.

Table 1 presents these meta-analytic summary statistics using the Walsh et al. (2015)
coefficient estimates for the four alternate measures of water clarity: logged and linear
1-year averageKD and logged and linear 3-year averageKD.Column (1) gives the unweighted
arithmetic mean elasticities for each distance buffer across all 14 counties, or γ̄unweighted

=
∑14

i=1 γi
14 , where γi represents the elasticity estimate from the i th county.6 The significance

levels are calculated using the average variance across the elasticity estimates.
As discussed by Nelson and Kennedy (2009); Borenstein et al. (2010), and Nelson (2013),

a more appropriate approach to estimating the mean effect size across multiple estimates is
to weight each estimate by its inverse variance in order to give more weight to more precise
estimates. The exact calculation of these weights depends on what we believe the variation
in the primary estimates represents. If the elasticity estimates across the different counties
reflect a single common elasticity of KD, and the true unobserved elasticity is the same in all
counties, then the variation in the primary estimates would simply be due to the random draw
from that common distribution. This would indicate the use of a Fixed Effect-Size (FES)
model reflecting the within-study variance of each estimate. Alternatively, different regions

6 The coefficient estimate from the hedonic regression represents an elasticity whenKD is entered in log form;
when KD is entered linearly, unique elasticities are calculated for each property transaction by multiplying the
coefficient estimate by KD and dividing by the sale price. We then average these unique elasticities for each
county and distance buffer.
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Table 1 Mean elasticities of light attenuation (KD) for in 14 Maryland counties

Distance from Bay Specification Unweighted mean
elasticity

RES mean
elasticity

FES mean
elasticity

Waterfront Semilog, 1year −0.051*** −0.056*** −0.057***

Double log, 1year −0.060*** −0.063*** −0.067***

Semilog, 3year −0.112*** −0.114*** −0.090***

Double log, 3year −0.129*** −0.123*** −0.027***

0–500m Semilog, 1year −0.016*** −0.014** −0.009***

Double log, 1year −0.016** −0.012* −0.008**

Semilog, 3year −0.001 −0.010 −0.015***

Double log, 3year −0.005 −0.009 −0.013**

500–1000m Semilog, 1year −0.019*** −0.013 −0.004

Double log, 1year −0.023*** −0.013 −0.003

Semilog, 3year −0.011 −0.008 −0.011**

Double log, 3year −0.017 −0.008 −0.010*

1000–1500m Semilog, 1year −0.008 0.002 0.008**

Double log, 1year −0.013 0.001 0.012***

Semilog, 3year −0.009 0.003 0.003

Double log, 3year −0.015 0.002 0.010

1500–2000m Semilog, 1year 0.004 0.001 0.001

Double log, 1year 0.007 0.003 0.004

Semilog, 3year 0.014 0.004 −0.001

Double log, 3year 0.018 0.011 0.006

The inverse variances of the elasticity estimates are used as weights in the RES and FES means.
Standard errors calculated using Stata metan command (Harris et al. 2008)
*** p < 0.01; ** p < 0.05; * p < 0.1

surrounding the Bay, with different features and local housing markets, may have different
underlying price elasticities. In this case, variation in the primary estimates would reflect
differences in the true underlying price elasticities across counties. This would point to the
need for a RandomEffect-Size (RES) model, reflecting both within-study and between-study
variance.7

For the FESmodel, mean elasticity estimates for each distance buffer presented in Table 1

are calculated as γ̄FES =
∑14

i=1 WFES,iγi
∑14

i=1 WFES,i

, where WFES,i = 1
Vi
. In this model, the elasticity

for each observation is weighted by the inverse variance of the estimate. The variance of this
mean FES elasticity is calculated as VFES = 1

∑14
i=1 WFES,i

.

The RES weighted means are calculated as

γ̄RES =
∑14

i=1 WRES,iγi
∑14

i=1 WRES,i
, where WRES,i = 1

Vi + T 2 ,

7 The Fixed Effect-Size (FES) model is also commonly called a fixed effect model or common-effect model.
Similarly, theRandomEffect-Size (RES)model is often called amixed effect or randomeffectmodel.However,
these models are conceptually different from the random effects and fixed effects panel data models commonly
used in other branches of the econometrics literature. We adopt the FES and RES terminology used by Nelson
and Kennedy (2009) and Nelson (2013) in order to avoid confusion.
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T 2 = Q − 13
∑14

i=1 WFES,i −
(∑14

i=1 (WFES,i)
2

∑14
i=1 WFES,i

) , Q =
∑14

i=1

γi − γ̄FES

Vi
.

This is an estimate of the mean elasticity weighted by two sources of variance, a
within-study variance, Vi, and a between-study variance, T2. The between-study variance is
estimatedwith theDerSimonian and Lairdmethod (DerSimonian and Laird 1986; Borenstein
et al. 2010) using the inverse variance weights, WFES,i, and the FESmean elasticity estimate,
γ̄FES . The RES model is preferred if the elasticities from each county are from different
distributions (Harris et al. 2008; Borenstein et al. 2010; Nelson 2013). In this framework the
weighted mean is interpreted as an estimate of the mean of the true effects. All three types
of means and associated standard errors were calculated using the metan command in Stata
(Harris et al. 2008).

Across both unweighted and weighted means, it is apparent from the results in Table 1
that water clarity is most important to buyers of properties located closer to the Bay. Recall
that a negative elasticity implies a positive premium for water clarity. For waterfront proper-
ties, a ten percent improvement in 1-year light attenuation leads to a statistically significant
appreciation of about 0.6%, and the effect size is roughly double for 3-year clarity. (A ten
percent improvement in light attenuation translates to approximately an 11 cm increase in
secchi depth on average.)

The price gradient extends beyond waterfront properties, with home price increases of
roughly 0.1% for a ten percent improvement in 1- or 3-year light attenuation for non-bayfront
homes extending out to 500 m. There is no consistently statistically significant effect on
home prices beyond 500 m in the FES and RES weighted means, and no statistically sig-
nificant effect beyond 1000 m in the unweighted means for either the 1- or 3-year clarity
measures.

As stressed in Walsh et al. (2015), few hedonic property value studies have incorporated
non-waterfront home prices into analyses of water quality. Poor et al. (2007) found that aver-
age home prices—including both waterfront and non-waterfront homes—in a Chesapeake
Bay county (St. Mary’s County, Maryland) responded to water quality. Walsh et al. (2011)
differentiated non-waterfront homes and found that water quality affected home prices out
to approximately 1000 m in Florida. Netusil et al. (2014) found that stream water quality can
affect Northwestern US home prices up to a mile (∼1600 m) away. Therefore, the distance
gradient identified by our study is within the range of previous literature.

While all three sets of summary statistics produce consistent results out to 500m, variation
in the preferences of local populations, features of the housing market, and other socioeco-
nomic and geographic differences across Bay counties could lead to plausible variation in
the true underlying elasticities of KD. We test the hypotheses that the estimated elasticities in
each distance buffer are homogenous across the 14 counties using a chi-squared test (Nelson
2013), and reject the null of no heterogeneity across county-level elasticities (p = 0.000 for
all specifications and distance buffers out to 1500m, beyond which elasticities across almost
all counties are equal to zero). This result implies that the elasticities are not drawn from a
single distribution, making the RES model the most appropriate.

The RES mean elasticities could be used as point estimates in a unit value benefit transfer
approach. Another approach to benefit transfer would involve examining and accounting
for factors that contribute to the variation in the elasticities of KD across counties. This is
known as a function transfer and is often considered superior to a simpler unit value transfer
(Johnston and Rosenberger 2010).
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4 Examining Heterogeneity Across Counties Using Meta-regressions

Statistically significant heterogeneity among the county-level estimates from the hedonic
regressions suggests that property value impactsmight vary across counties in theChesapeake
Bay region based on socioeconomic characteristics, Bay ecology and associated amenities,
and perhaps other unobserved sources of heterogeneity.We estimate ameta-regressionmodel
to identify such sources of heterogeneity across counties. This model is used as the basis for
a subsequent benefit function transfer. The meta-regression allows us to evaluate the source
of the variation among the elasticity estimates, and the function transfer accounts for this
variation when transferring the estimates to out-of-sample counties in the Chesapeake Bay
region.

The meta-regression equation can be written as

γids = α0 + Liα1 + Ddα2 + Dsα3 + εids (2)

Here γids represents the estimated elasticity of light attenuation in county i at distance d
from the waterfront estimated using specification s = 1, . . ., S. Li is a vector of locational
variables representing socioeconomic and ecological attributes of each county; Dd is a vector
of dummy variables denoting the five Bay distance buffers; α0, α1, and α2 are vectors of
coefficients to be estimated; and εid is a normally distributed error term.

The meta-regression approach also allows us to evaluate the implications of the different
water clarity specifications used in the hedonic analysis. The use of meta-regression to assess
and compare multiple estimates from the same study is termed “internal meta-analysis”
(Banzhaf and Smith 2007; Kuminoff et al. 2010). In particular, we examine the effect of a
semi-log versus double-log functional form and a 1-year versus 3-year water clarity average.
In Eq. (2), each county i at distance d has S = 4 elasticity estimates. Ds is a vector of dummy
variables representing these different specifications.

We use the RES meta-regression model to estimate (2) (Harbord and Higgins 2008).
This estimator uses the RES weighting scheme described above to account for both within-
and between-county variance of the elasticities derived from the hedonic regressions. This
approach givesmoreweight tomore precise estimates and addresses heteroskedasticity, while
accounting for the fact that there could still be significant unexplained heterogeneity among
elasticities even after controlling for several covariates (Nelson and Kennedy 2009; Nelson
2013).8

Previousmeta-analyses of the value ofwater quality have included demographic character-
istics like income, attributes of the amenity (waterbody type, water quality), and an indication
of whether participants in stated preference studies are users of the resource (Johnston et al.
2005; VanHoutven et al. 2007; Johnston and Thomassin 2010; Ge et al. 2013).Meta-analyses
including estimates from hedonic property models typically include some measure of prox-
imity to the resource, and sometimes include median or mean home value instead of income
as a demographic covariate (Debrezion et al. 2007; Nelson 2004; Kiel and Williams 2007;

8 The use of multiple elasticity estimates per county based on different econometric specifications and
distances from the Bay creates a panel structure in the data. Because estimates within each county are derived
using the same data, they are not independent. As an alternative to the RES meta-regression, we also estimate
a random effects panel data model with a county-specific error to address the correlation among elasticity
estimates within each county. Nelson and Kennedy (2009) recommend this model to address correlation
among estimates when multiple estimates per study are included. We use a weighted random effects panel
model with clustered robust standard errors, again weighting each elasticity using the RES meta-analytic
weighting scheme to address heteroskedasticity. These results are presented in the Appendix Table 9. The
results from the RES and panel data estimators are extremely similar.
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Mazzotta et al. 2014). In order to be useful for benefit transfer, all variables included in the
meta-regression must be available for both the primary study and benefit transfer areas.

Table 2 shows summary statistics of socioeconomic and environmental characteristics
in the hedonic and benefit transfer study areas, including median income and home value,
population density, the proportion of housing units that are second homes, and boat ownership
per household. Such factors could reflect heterogeneity in preferences for water clarity and
determine the shape of the hedonic price function.We also presentGIS-derived environmental
variables, which may reflect differences in the amenities provided by different portions of the
Bay. These variables include the percent of the county’s Chesapeake shoreline that borders
a tidal tributary (as opposed to the Bay main stem), less saline waters (represented by the
tidal fresh and oligohaline salinity categories), waters at least 1.5 m deep, and mean spring-
summer KD during the study period. EPA’s Chesapeake Bay Program provided historic data
on the light attenuation coefficient (KD), as well as projected improvements from the TMDL.

We rely on the 2000 US Census for data on housing values and other socioeconomic
characteristics.9 The Census block group is the finest level of disaggregation for which data
are available. The 2000 Census is appropriate because (i) it falls within the time span of the
hedonic analysis (1996–2008), and (ii) more recent American Community Survey data only
provide total and median housing value at the more aggregate Census tract level. Relatively
fine spatial resolution is important given the localized nature of the property value impacts
from Bay water clarity. For each county we aggregate the Census data for all block groups
falling at least partially within 500m of the Chesapeake Bay to approximate the spatial extent
of the study area.

Table 3 presents the results of the RES meta-regressions. Models (1) through (4) include
different sets of explanatory variables in the meta-regression. The models increase in com-
plexitymoving from left to right, withmore socioeconomic and ecological covariates.Models
(2) and (4) include interaction terms between the socioeconomic/ecological covariates and a
dummy variable representing the non-waterfront distance buffers. The non-waterfront inter-
action terms allow us to evaluate whether any of the socioeconomic or ecological variables
have different effects on the elasticity of KD for properties farther from the shore. All models
include dummy variables denoting the econometric specification of the hedonic equation, as
well as non-waterfront interaction terms with these variables. The adjusted R-squared statis-
tics show that the explanatory power of the model generally increases as more covariates are
added, rising from 0.39 in Model (1) to 0.68 in Model (4).

Model (1) is the most parsimonious model, including only the distance buffer dummy
variables, median home value, and percent of the county’s shoreline adjacent to waters more
than 1.5 m deep. The positive coefficients on the distance buffer dummy variables illustrate
how the property value impact declines with distance from the shore. (Since a negative
elasticity of KD indicates a positive premium for water clarity, coefficients with a positive
sign suggest a lower premium for water clarity.) The water depth coefficient is positive
and significant, indicating that water clarity is more important to homebuyers for properties
adjacent to shallower water. This result makes sense if residents are more likely to dock
boats at properties with deeper water, allowing them to travel easily to other parts of the Bay
for recreation. The negative and significant coefficient on median home value indicates that
water clarity is more important to homebuyers in wealthier areas. (Median household income

9 Data on housing values at the individual parcel level from Virginia, Delaware, and DC were either unavail-
able, incomplete, or cost prohibitive. We do have data on individual property assessed values for Baltimore
City, Caroline County, Montgomery County, and Worcester County in Maryland, which we use in the benefit
transfer for these counties.
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Table 2 Chesapeake Bay region characteristics: benefit transfer and hedonic study areas

Benefit transfer area Primary study area

Delaware District of
Columbia

Virginia Maryland Maryland

Socioeconomic characteristicsa

Total owner-occupied
housing value (billion
2000$)

1.7 2.8 46.6 2.4 44.8

Median owner-occupied
housing value (2000$)

134,372 174,974 122,809 172,600 135,340

Median income (2000$) 56,567 45,285 46,459 59,538 50,465

Population density
(people per m2)

0.0003 0.004 0.0007 0.001 0.0007

Second homes (%
housing units)

0.5% 1.7% 4.4% 1.0% 4.1%

Number of registered
boats per household

0.012 0.005 0.014 0.006 0.021

GIS-derived ecological variables

% shoreline on a tidal
tributary

100% 100% 86% 100% 78%

% shoreline along tidal
fresh water

50% 100% 40% 45% 15%

% shoreline along
oligohaline water

50% 0% 14% 11% 27%

% shoreline bordering
water at least 1.5 m deep

33% 29% 39% 35% 30%

Mean KD
1996–2008 (m−1)

3.3 2.9 2.4 3.0 2.7

Change in clarity from
baseline to TMDL (cm)

11 15 11 11 12

Number of counties 2 1 44 4 14

aAll socioeconomic characteristics are derived from the 2000 U.S. Census except for the number of boats per
county. Information on the number of boats registered in each county by the U.S. Coast Guard in 2011 was
downloaded from www.boatinfoworld.com (accessed Nov. 15, 2012); we then normalize boat registration by
Census data on the number of households per county. We use Census data on the number of vacant homes
for seasonal, recreational, or occasional use as a proxy for the number of second homes. Census-derived
socioeconomic characteristics for each county are calculated using data on block groups within 500 m of the
waterfront. Total owner-occupied housing value is calculated by summing across counties; all other summary
statistics are calculated as simple averages across counties

was excluded from all of the regressions due to collinearity with median home value, but
yielded similar results when used as an alternative to median home values.)

Model (2) uses these same covariates but also includes the non-waterfront interaction
terms. The results of this model suggest that the effect of the water depth variable is no
different for waterfront versus non-waterfront homes. However, the effect of median home
value does vary; the total effect is negative and statistically significant in both locations, but
for waterfront homes the effect is roughly double what it is for non-waterfront homes. (The
net impact of a variable on non-waterfront homes is obtained by summing the non-interacted
with the interacted coefficient estimates.)
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Table 3 Meta-regression results (dependent variable: elasticity of KD fromWalsh et al. (2015) spatial hedonic
regressions)

(1) (2) (3) (4)

Socioeconomic and ecological covariates

Non-waterfront distance buffer 0.041** −0.063 0.041** −0.098

(0.018) (0.046) (0.018) (0.12)

≥500 m distance buffer 0.0088 0.0087 0.0079 0.0085

(0.0095) (0.0094) (0.0092) (0.0079)

% coastline water depth ≥1.5 m 0.13*** 0.18*** 0.23*** 0.28***

(0.020) (0.048) (0.042) (0.087)

Median home value −5.7e−7*** −1.3e−6*** −1.1e−6*** −2.2e−6***

(1.3e−7) (3.0e−7) (3.1e−7) (6.2e−7)

% coastline along tributary −0.052 0.099

(0.049) (0.11)

Population density 4.6 −97.6***

(12.8) (27.6)

% second homes −0.81 −4.0***

(0.65) (1.3)

Boats per household 1.1 4.1*

(1.2) (2.3)

% tidal fresh salinity 0.031 −0.0086

(0.050) (0.10)

% oligohaline salinity 0.022 0.11

(0.058) (0.12)

Mean KD (1996–2008) −0.011 0.008

(0.019) (0.039)

Covariates interacted with non-waterfront dummy variable

% coastline water depth ≥1.5 m −0.057 −0.083

* non-waterfront (0.053) (0.096)

Median home value 8.5e−7** 1.5e−6**

* non-waterfront (3.4e−7) (6.9e−7)

% coastline along tributary −0.19*

* non-waterfront (0.12)

Population density 123***

* non-waterfront (30.3)

% second homes 3.9***

* non-waterfront (1.5)

Boats per household −4.0

* non-waterfront m (2.6)

% tidal fresh salinity 0.033

* non-waterfront (0.11)

% oligohaline salinity −0.11

* non-waterfront (0.13)
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Table 3 continued

(1) (2) (3) (4)

Mean KD (1996–2008) −0.017

* non-waterfront (0.044)

Specification variables

3-year average water clarity −0.046** −0.047** −0.047*** −0.043***

(0.018) (0.018) (0.018) (0.016)

Double log model −0.0010 −0.0032 −0.0016 −0.008

(0.0181) (0.018) (0.018) (0.016)

3-year average water clarity 0.056*** 0.056*** 0.055*** 0.048***

* non-waterfront (0.020) (0.020) (0.020) (0.018)

Double log model 0.0015 0.0039 0.0019 0.0089

* non-waterfront (0.020) (0.020) (0.019) (0.017)

Constant −0.018 0.067 0.087* 0.19*

(0.023) (0.041) (0.051) (0.11)

Adjusted R-squared 0.39 0.40 0.44 0.68

N = 280

Standard errors in parentheses
*** p < 0.01; ** p < 0.05; * p < 0.1

Model (3) adds several more covariates, including the percent of coastline that borders a
tidal tributary rather than the main stem of the Bay, population density, the percent of housing
units that are second homes, boat ownership per household, percent of the coastline bordering
water of tidal fresh and oligohaline salinity, and mean KD.10 While the additional variables
are jointly significant at the one percent level, only the water depth and median home value
variables remain individually significant in this model. The additional covariates do not help
explain a substantial amount of variation in the elasticity of KD, though this is in part due
to collinearity.11 However, when the non-waterfront interaction terms for these variables are
included in Model (4), the explanatory power of the model jumps considerably. Model (4)
indicates that water clarity is more important in areas with higher population density, more
second homes and with lower boat ownership, but that these effects only hold for waterfront
properties.

Turning now to the coefficient estimates for thewater clarity specification variables, results
across all fourmodels indicate that the use of the double-log rather than the semi-logmodel has
no significant effect on the estimated elasticity of KD for either waterfront or non-waterfront
homes. Measuring water clarity using a 3-year average produces a significantly larger effect
on home values than the 1-year average measure and almost doubles the elasticity of KD,
though this relationship holds for waterfront homes only. This result indicates that waterfront
homebuyers may be more aware of and concerned about longer term trends in water clarity
rather than short-term swings. The premium that homebuyers place on water clarity that

10 In previous drafts of the paper, we considered two intermediate models: a model similar to Model (1) but
adding just population density and the percent of the coastline that borders a tidal tributary, and a model that
also included non-waterfront interaction terms for these variables. The results were similar to Models (3) and
(4) but are omitted here for brevity.
11 These covariates all had variance inflation factors greater than those for the variables included in Models
(1) and (3), justifying their exclusion.
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persists over multiple years suggests that they prefer average water clarity improvements that
fluctuate less over time, all else constant. Alternatively, it could be that the 3-year measure
is more susceptible to biases from other unobserved local trends in housing markets. It also
contrasts with the results of a hedonic property analysis of Maine lakes, which found no
significant difference between the price premiums for water clarity measured using current
year, previous year, or 10-year average data (Michael et al. 2000).

5 Evaluating Approaches for Benefit Transfer to Other Areas of the
Chesapeake

Next we calculate measures of internal and external validity to determine which meta-
regression models are most appropriate for transferring benefits outside of the 14 Maryland
counties included in the original hedonic analysis (herein referred to as the “Maryland hedo-
nic counties”), following an approach similar to Stapler and Johnston (2009), Lindhjem and
Navrud (2008), and Bateman et al. (2011). We compare the four meta-regression models
presented in Table 3, as well as the RES mean elasticities from Table 1, which provide
point estimates for a unit value transfer of the waterfront and non-waterfront elasticities of
KD. As a measure of internal (within-sample) transfer error, we examine the absolute value
of the difference between each county’s elasticity estimate from the hedonic models and
the predicted value from the RES mean or meta-regression models, averaged over all 14
Maryland hedonic counties.12 As a measure of external (out-of-sample) transfer error, we
calculate a similar measure for each model by iteratively re-estimating the meta-regression
models, but leaving out all elasticity estimates from one county at a time, getting the predicted
value for the excluded county, and taking the absolute value of the difference between the
excluded county’s elasticity and its predicted value. We then average this measure across
all 14 Maryland hedonic counties. Both types of transfer error are calculated for the dou-
ble log 1- and 3-year average water clarity elasticities for both the waterfront and 0–500m
(non-waterfront) distance buffers. (We do not examine transfer error for the semi-log models
because the meta-regression results were not statistically different from the double log model
results.)

Table 4 shows that the use of a meta-regression model incorporating socioeconomic and
ecological covariates sometimes improves in-sample forecasting.When using 1-year average
clarity, Models (1) and (2) generate lower transfer errors than the RES mean when predicting
the waterfront elasticity of KD. (Transfer errors from the meta-regression models that are
lower than those from the RES mean are shown in bold text.) Models (3) and (4), the more
complex meta-regressions, yield comparable or higher transfer errors. All regression models
using 1-year averageKD perform poorly compared to theRESmean for the non-waterfront 0–
500mdistance buffer elasticity.Whenusing3-year averageKD, themeta-regression predicted
values outperform the RESmeans across all models and both distance buffers. In addition, the
3-year average water clarity measure always yields a higher absolute transfer error compared
to the 1-yearmeasurewhen comparingwithin amodel and distance buffer.While a longer-run
average may better reflect steady-state changes in water clarity likely to occur in response to

12 We use the absolute difference (rather than percent difference) as the measure of transfer error because
it allows for symmetric treatment of elasticities regardless of whether they are above or below the predicted
values. The percent difference yields substantially larger transfer errors when the actual elasticity is close to
zero than when the elasticity is larger in absolute value than the predicted value, even if the differences are
equal in absolute terms.
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Table 4 Internal and external absolute transfer error

RES mean Meta-regression model

(1) (2) (3) (4)

In-sample transfer error

1-year average log KD

Waterfront 0.051 0.046 0.047 0.051 0.053

0–500m (non-waterfront) 0.018 0.024 0.023 0.025 0.022

3-year average log KD

Waterfront 0.125 0.116 0.110 0.120 0.100

0–500m (non-waterfront) 0.052 0.036 0.039 0.039 0.042

Out-of-sample transfer error

1-year average log KD

Waterfront 0.055 0.053 0.069 0.129 0.304

0–500m (non-waterfront) 0.019 0.026 0.027 0.106 0.080

3- year average log KD

Waterfront 0.135 0.127 0.136 0.179 0.348

0–500m (non-waterfront) 0.056 0.040 0.043 0.115 0.087

Transfer errors from the meta-regression models that are lower than those from the RES mean are shown in
bold

long-term policies, this finding suggests that measures spanning broader temporal windows
could potentially be reflecting other unobserved local trends.

When considering the out-of-sample transfer errors, the meta-regression results look con-
siderably worse. Transfer errors for both measures of clarity at the waterfront and 0–500m
distance buffers increase substantially with more complex regression models. In fact, only
Model (1) outperforms the RESmean in predicting thewaterfront elasticity for out-of-sample
counties using both the 1- and 3-year clarity measures. None of the meta-regression mod-
els outperform the RES mean for the 1-year average KD non-waterfront elasticity, although
Models (1) and (2) yield lower transfer errors when using 3-year average KD. The con-
trast between the internal and external transfer errors may initially seem surprising, but it
suggests that meta-regression models that control for many socioeconomic and ecological
covariates may not be generalizable, even to locations with similar characteristics. Given the
relatively small number of counties in the dataset, the models with more covariates may even
be overfitting the data rather than describing true underlying relationships among variables.

These results run counter to a near-consensus that benefit function transfer is preferable to
unit value transfer (Johnston and Rosenberger 2010). However, a small but growing number
of studies support the contention that “simplicity can beat complexity when forecasting”
(Nelson2013). Such studies havehighlighted cases inwhichunit value transfers outperformed
function transfers and socioeconomic controls heightened rather than reduced transfer error
(Johnston and Duke 2010; Lindhjem and Navrud 2008; Barton 2002; Bateman et al. 2011;
Nelson 2013). Our results echo the finding that simple benefit transfer models—even unit
value transfers—can outperform complex function transfers including numerous covariates.
They are also consistent with Bateman et al.’s (2011) hypothesis that mean value transfers
dominate value function transfers when the policy site has similar characteristics to the study
site.
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6 Calculating the Property Value Impacts of the TMDL

In this section, we estimate the property value impacts from the projected improvements in
water clarity from the TMDL in both the 14 Maryland hedonic counties and the remaining
counties adjacent to the Chesapeake Bay and its tidal tributaries. For the 14Maryland hedonic
counties, we apply the estimated elasticities from the hedonic analyses to all residential
properties within 500 m of the waterfront in these counties. We focus on calculating changes
in home values within this boundary because all three approaches for calculating mean
elasticities suggest that there are increases in home values up to, but not beyond, this distance.
We then use the meta-analysis results to transfer the estimates to properties in waterfront
counties in Virginia, Delaware, the District of Columbia, and four Maryland counties that
were excluded from the original hedonic analysis due to data limitations.

Using the light attenuation (KD) elasticity estimates from the hedonic regressions is rea-
sonable for this application because the anticipated change in water clarity resulting from the
TMDL is relatively small—11% on average—and well within the range of variation in the
historic data. However, it is important to note that the geographic scale of the projected water
clarity changes is widespread and the water clarity improvements under the TMDL could
potentially be considered non-marginal. The use of hedonic coefficients to project changes
in property values from water clarity improvements under the TMDL rests on the assump-
tion that the hedonic price function does not shift. Such shifts could occur if non-marginal
improvements in water clarity spur households to relocate, which could then lead to changes
in community demographics and other features, ultimately resulting in a new equilibrium
in the housing market (Bartik 1988; Kuminoff et al. 2013). If such sorting occurs, our pro-
jections could either over- or under-estimate the gains to property owners from the TMDL.
Another limitation of our analysis is that we do not account for potential shifts in the hous-
ing market equilibrium caused by the stormwater management practices or other costs and
ancillary benefits of the TMDL policy that may affect homeowners.

In the calculations that follow, we conduct the benefit transfer to out-of-sample counties
using two approaches: a unit value transfer using the RES means as point estimates for the
elasticity of KD at the waterfront and 0–500m buffers, and a function transfer using the
meta-regression results to predict unique elasticities of KD for each out-of-sample county
and distance buffer. We use the double log 1- and 3-year average water clarity specifications
to calculate the value of improved water clarity to property owners.13

First we calculate in-sample price impacts in the 14Maryland hedonic counties.Wematch
each residential property within 500m of the Bay with a light attenuation elasticity based on
its county and distance from the Bay. We write this expression as:

�Vicd = γcd
∗%�WQi

∗Vicd (3)

where Vicd is the assessed value of property i in county c at distance d . The change in value
at the property is denoted as �Vicd , %�WQi is the percent change in water clarity closest
to property i , and γcd is the light attenuation elasticity estimate corresponding to county c
in distance buffer d .14 The data on assessed property values, which were available for the
year 2009, were adjusted to 2010 values using the US Federal Housing Finance Agency’s

13 As already noted, the choice of a semi-log versus a double log specification has no significant effect on
the results.
14 We apply the estimated elasticities (and corresponding 95% confidence intervals) in the calculation of net
benefits for all counties and distance buffers regardless of the statistical significance and sign of the estimated
elasticity of KD; in some cases these elasticities are positive, though not significantly different from zero.
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Housing Price Index (HPI), which accounts for regional differences in appreciation in home
prices over time.15

To estimate the improvement in water clarity from the TMDL, EPA’s Chesapeake Bay
Program uses its Chesapeake Bay Estuary Model to project light attenuation for grid cells
throughout the Bay and tidal tributaries as a function of nitrogen, phosphorus, and sediment
runoff under two scenarios: a baseline accounting for pollution reduction actions undertaken
before the TMDL was enacted and other actions that would be implemented in the future in
the absence of the TMDL; and a policy scenario in which the TMDL is fully implemented
according to the States’ and the District of Columbia’s Watershed Implementation Plans,
but where all other socioeconomic factors (such as population) are held constant.16 Figure 3
illustrates the estimated percent decline in KD (i.e., improvement in water clarity) between
the baseline and the TMDL scenarios due to the modeled reduction in nutrient and sediment
runoff. The average decrease in KD across all grid cells is 11%, corresponding to an 11 cm
increase in secchi depth. The largest gains in water clarity are expected in the upper Bay and
tidal tributaries, with smaller improvements occurring closer to the mouth of the Bay.

Focusing first on the 14 Maryland counties included in the original hedonic analysis,
Table 5 shows that the value of each home within 500 m of the Bay is estimated to increase
by $1299 on average in response to the TMDLwhen using the 1-year water claritymeasure.17

Amuch larger appreciation is expected among waterfront homes, amounting to an average of
$5571 per home; non-waterfront homes within 500m of the water appreciate by only $366.
This difference occurs becausewaterfront homes have both larger light attenuation elasticities
(in absolute value) and higher assessed values. (The HPI-adjusted average assessed value
of waterfront homes in the dataset is $645,194, compared to $234,684 for non-waterfront
homes within the 500-m buffer.) When the 3-year water clarity measure is used, the results
are roughly double: a $11,901 average increase for waterfront homes, and a $575 increase
for non-waterfront homes within 500 m of the water.

To calculate the total increase in property values across these 14 counties, we sum the
estimated house-specific price increases across all homes within the waterfront and 500 m
buffers. The first row of Table 6 presents these aggregated property value increases, based on
both the 1- and 3-year water clarity models. The aggregate increase in home values among
these properties is $213 million using the 1-year measure and is $427 million using the 3-
year measure. More than three-quarters of the increase accrues to waterfront properties, even
though they make up only 18% of homes within 500 m of the Bay.

A similar approach is used to calculate the residential property value impacts in Virginia,
Delaware, the District of Columbia, and the four additional counties in Maryland. Similar to
expression (3) above, we calculate

�

N∑

i

Vicd = γ̂cd
∗

N∑

i

(
%�WQi

∗Vicd
)

(4)

15 Federal Housing Finance Agency (FHFA), http://www.fhfa.gov/Default.aspx?Page=81, accessed January
13, 2013.
16 Shenk and Linker (2013) provide further details about the baseline and TMDL scenarios (which they label
the “2009” and “TMDL WIP” scenarios). Wang et al. (2013) and Keisman and Shenk (2013) describe the
Estuary Model. The Estuary Model’s projections are missing or unreliable for three Bay segments denoted in
Fig. 3 (Shenk, personal communication). We exclude properties matched to grid cells in these segments in our
calculations. The Watershed Implementation Plans (WIPs) for each jurisdiction are available at http://www2.
epa.gov/chesapeake-bay-tmdl/chesapeake-bay-watershed-implementation-plans-wips (accessed November
30, 2015). The Phase II WIPs were used for these projections.
17 This and subsequent calculations adopt the simplifying assumption that the improvement in water clarity
occurs instantaneously, rather than gradually over time.
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Fig. 3 Projected reduction in Chesapeake Bay spring–summer average light attenuation (KD) from baseline
to TMDL (%)

Table 5 Mean property value increases from TMDL water clarity improvements in 14 Maryland counties

Distance from Bay Mean home price increase
(2010$), 1-year KD

Mean home price increase
(2010$), 3-year KD

Waterfront $5571 $11,901

0–500m (non-waterfront) $366 $575

All homes within 500m $1299 $2606
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Table 6 Total property value increases from TMDL water clarity improvements

Aggregate home price increase,
1-year KD (million 2010$) (95%
confidence intervala)

Aggregate home price increase,
3-year KD (million 2010$) (95%
confidence intervala)

Hedonic study area

Maryland
(14 counties)

$213 $427

($40–385) ($178–676)

Benefit transfer area Unit value transfer Function transfer Unit value transfer Function transfer

Delaware $5 $4 $9 $6

($2–$8) ($2–$7) ($1–$16) ($3–10)

District of Columbia (DC) $19 $36 $30 $41

($6–$32) ($18–$54) (−$2 to $63) ($23–$59)

Virginia $144 $179 $243 $235

($51–$236) ($42–$316) ($7–$479) ($97–$373)

Maryland (4 counties) $5 –$26 $6 −$29

($3–$10) (−$43 to $10) (−$6 to $17) (−$46 to $12)

Total $386 $406 $715 $680

($102–$671) ($59–$752) ($178–$1251) ($255–$1106)

aThe confidence interval only accounts for uncertainty in the predicted elasticity of KD. Estimates of uncer-
tainty inwater clarity improvements or in baseline property valueswere unavailable. Function transfer estimates
based on Model (1)

Here
∑N

i Vicd represents total housing stock value of all N homes within 500 m of the Bay
in county c,�WQi is still the change in water clarity experienced by home i , and γ̂cd is the
predicted value of the elasticity of light attenuation for homes in county c and distance buffer
d .18

For the four remaining Bayfront counties in Maryland, we calculate total housing value
by simply summing the assessed values of all properties within each Bay distance buffer and
adjusting from 2009 to 2010 values using the HPI. Calculating housing stock value within
each distance buffer for block groups in Virginia, Delaware, and DC is more complicated
because we do not have parcel-level data. We use block-group level housing data from the
2000 Census, updated for appreciation in home values from the year 2000 to 2010 using
the HPI.19 We also make additional adjustments to the data because (i) the Census only
provides data on the value of owner-occupied housing but not rental or vacant properties,
(ii) the number of households in each county changed from 2000 to 2010 and (iii) Census
block groups do not fall neatly within the Bay distance buffers used in our analysis. The
“Appendix” provides more detail on these adjustments.

We use two approaches to estimate γ̂cd . The first corresponds to the unit value transfer
approach and uses theRESmean elasticity for each distance buffer as the estimate of the value
of improved water clarity in each out-of-sample distance buffer (reported in Table 1). The

18 Block groups in Virginia, Delaware, and DC, were matched to the single nearest grid cell to determine the
change in water clarity.
19 The HPI is not available for a few areas surrounding the Chesapeake Bay that are outside of aMetropolitan
Statistical Area (MSA) or Metropolitan Statistical Area Division (MSAD). For these areas, we impute the
change in housing prices by taking the HPI from the nearest MSA or MSAD on the same side of the Bay as
the corresponding block group.
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second approach uses a function transfer to estimate γ̂cd for the transfer counties. Specifically,
we use the coefficient estimates from Model (1) in Table 3 and then plug into the right-
hand side the covariate values specific to each individual county and bay distance buffer.
This yields predicted values for the individual elasticities corresponding to each county and
distance buffer. We rely on Model (1) because it has the lowest out-of-sample transfer error
of the meta-regression models.

Table 6 presents the benefit transfer results from improvements in water clarity under the
TMDL using the unit value and function transfer approaches and the 1- and 3-year measures.
The results show that the majority of property value increases in the transfer areas occur in
Virginia, regardless of the transfer approach. Calculations using the value of 3-year average
water clarity yield higher impacts than those using the value of 1-year average clarity. The
unit value and function transfer approaches yield similar results for Delaware, as well as for
Virginia. However, the function transfer, which projects the elasticity of KD based on median
property values and water depth, generates substantially larger price impacts for DC than the
unit value approach because of DC’s relatively high property values. In the four Maryland
transfer counties, the function transfer yields a projected depreciation in home values. This
counterintuitive result is driven by Baltimore City, which is bordered entirely by deep water.
(Recall that the deep water dummy variable is associated with a smaller premium for water
clarity.)

As noted above, we calculate the increase in property values under the assumption that
that the hedonic price function for water clarity does not shift in response to the TMDL
policy. Summing the results from the hedonic and transfer areas yields a total net present
value gain of $386 to $715 million, depending on the benefit transfer approach and the
temporal duration of the water clarity measure. The 95% confidence intervals around these
point estimates are overlapping but are also fairly wide: $102 to $671 million and $255 to
$1106 million, respectively. While the 3-year average clarity values are larger than the 1-year
clarity values, they also have a wider confidence interval, indicating that they are less robust.

The result that property value impacts nearly double when the benefit transfer results are
added to the property value increases from the 14Maryland hedonic counties is sensible given
the distribution of total owner-occupied housing value across the different areas (Table 2).
The 14 Maryland hedonic counties comprise 46% of owner-occupied property value in
Census block groups within 500 m of the waterfront along the Chesapeake Bay. Property
value increases in the 14Maryland hedonic counties are somewhat larger as a percent of total
benefits, representing roughly 55–60% of the property value increase.

7 Conclusions

This study projects the change in property values from pollution reduction policies in the
Chesapeake Bay using an internal meta-analysis of results from the largest hedonic property
value study of water clarity to date. We examine the mean value of water clarity to homebuy-
ers, identify sources of variation in the implicit value of water clarity across counties, and
transfer those values to other states and counties bordering the Chesapeake tidal waters. The
results are useful for analysts, policymakers, and members of the public interested in evalu-
ating the impacts to near-waterfront property owners of Chesapeake Bay pollution cleanup
efforts. The results could also inform policies to reduce pollution in other estuaries and iconic
waterbodies. For instance, Artell and Huhtala (2015) assert that property value impacts could
assist in evaluating the goals of the EU Water Framework Directive.
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The results also provide some insights about methods for estimating the property value
impacts of water quality and for benefit transfer. The meta-regression results suggest that the
value of water clarity is greater in areas with shallower water and higher property values,
suggesting that it could be important to control for these factors in a benefit transfer. At
the same time, including additional socioeconomic and ecological variables in the meta-
regression worsens its out-of-sample predictive power. A simple benefit transfer approach
using the RES mean of the water clarity elasticities as a point estimate for the value of water
clarity outperforms most of the meta-regression based function transfers that we evaluate.

In addition, the duration of the water clarity measure has impacts that are significant both
statistically and economically: the value of 3-year average water clarity is roughly double
the value of 1-year average water clarity for waterfront properties, which could indicate that
residents are more aware of or concerned about longer term trends in water clarity rather than
annual variations. The 3-year average results have a larger confidence interval and transfer
error, however, suggesting that there is greater uncertainty about these estimates.

These results highlight questions that remain about the best approaches for estimating
the value of water quality improvements in policy contexts where analysts rely on benefit
transfer.Adjustingproperty value estimates to account for local socioeconomic and ecological
variation is intuitively appealing, but our analysis does not provide strong empirical support
for doing so, at least not in the context of relatively homogenous environmental commodities
and housing markets. Mean values may perform somewhat better, but we urge caution when
considering the transfer of values estimated here far-afield of the study region given the iconic
nature of the Chesapeake Bay. Further meta-analyses incorporating cross-regional estimates
of the value of water quality using the hedonic property value approach would shed light on
these issues.

Appendix: Census Housing Value Data Adjustments for Benefit Transfer

Housing value data from the Census have several limitations that we address through a series
of adjustments. As already noted, we use data from the 2000 Census because housing value
is available at the relatively spatially refined block group level. However, use of data from
2000 could lead to a misrepresentation of property value impacts in 2010 (the reference year
chosen for the analysis) because both the number of housing units and the average value of
housing units changed over time. We use the HPI to adjust for region-specific changes in
home prices over time, and we use county-level Census data on the change in the number
of households from 2000 to 2010 to adjust for population growth. (Because Census block
group and tract boundaries change over time, it was only feasible to determine the change in
the number of households at the county level.) In addition, the Census only provides data on
housing values for owner-occupied houses. Rental and vacant properties (including second
homes) comprise a substantial proportion of the housing stock in counties bordering the
Chesapeake Bay —from 15% (in Delaware) to 60% (in DC).

We use a regression-based approach to make these adjustments, relying on the fact that
we have a more complete dataset of property values for theMaryland counties in our analysis
from MDPV that includes the assessed values of all residential properties (owner-occupied
and otherwise) in 2009. We use an ordinary least squares regression to estimate the rela-
tionship between MPDV data on total assessed property values, which we aggregate up
from individual home assessed values to the Census block group level, and Census data on
owner-estimated housing values, also at the block group level. Specifically, we estimate the
following relationship:
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Table 7 Total assessed housing value in Maryland block groups, OLS regression

Total assessed housing value (MDPV)

Total owner-occupied housing value (U.S. Census) 0.87***

(0.014)

Average owner-occupied housing value × number
of non-owner-occupied units (U.S. Census)

0.12***

(0.028)

Observations 1214

R-squared 0.85

Standard errors in parentheses
*** p < 0.01; ** p < 0.05; * p < 0.1

ni+n2∑

i

Vi,2010 = β1

n1∑
Vi,2010 + β2n2v̄2010 + εb (5)

In this equation,
∑ni+n2

i Vi,2010 is the sum of the value of all n1 owner-occupied and n2
non-owner-occupied properties in the Census block group, calculated using MDPV data
updated to 2010 values with the HPI.

∑n1 Vi,2010 is the sum of the value of only the n1
owner-occupied properties in the block group, taken from the 2000 Census data and updated
to 2010 values. v̄2010 is the average value of owner-occupied properties in each Census block
group, again updated to 2010 values, which is multiplied by n2 to obtain a proxy for the total
value of non-owner occupied properties. β1 and β2 are coefficients to be estimated, and εb is
a normally distributed error term. β1 will be equal to one if total owner-reported home values
documented by the Census are roughly equal to the total of the assessed home values used
by Maryland counties for tax assessments. β2 will be equal to one if both owner-reported
values are equal to county assessed values and if rental and vacant properties have home
values equal to owner-occupied properties. The model is estimated without a constant term.

Table 7 reports the estimates of the relationship between totalMDPVassessed homevalues
and Census home values in Maryland block groups. The R-squared of 0.85 indicates that the
Census data are highly correlated with the MDPV data. Both coefficients are significantly
greater than zero. β1 is 0.87, suggesting that home values reported by owners to the Census
are somewhat higher than those recorded by county assessors. β2 is much smaller, at 0.12,
which indicates that rental and vacant properties have a much lower average value than
owner-occupied properties. Assuming these relationships estimated from the Maryland data
also hold in DC, Delaware, and Virginia, we predict the total value of the housing stock in
each block group in 2010 in these other states for non-owner-occupied properties and the
change in population over 2000 to 2010.

Next we adjust the data to account for the fact that Census block groups do not neatly
correspond to the Bay distance buffers over which the estimated price impact of water clarity
varies. We again rely on the MDPV data on the assessed values of residential properties to
calculate the fraction of the housing stock value in each block group in Maryland that lies
either along the waterfront or within 500 m of the Bay. We regress the percent of block group
housing stock in each of the two distance buffers on several geographic variables in two
separate equations. Independent variables include the percent land area in each block group
within 50 m (as a proxy for waterfront area) and 500 m of the waterfront, and the distance
of the block group to the Bay (all calculated using GIS tools). We also include the median
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Table 8 Percent census block group housing value within each Bay distance buffer, two-parameter beta
distribution model

Bayfront 0–500m (non-waterfront)

% land area within 50 m of Bay 4.6*** −0.57

(0.95) (1.3)

% land area within 500 m of Bay 0.62** 3.5***

(0.27) (0.26)

Block group distance from Bay −0.00087 −0.0019***

(0.00083) (0.00052)

Median housing value 3.4e−06*** 1.9e−06**

(6.4e−07) (6.4e−07)

% second homes 5.5*** 6.7***

(0.81) (0.96)

Population density −384.0*** 48.4*

(72.0) (27.6)

Constant −2.5*** −1.9***

(0.15) (0.14)

Log likelihood 272.23 313.70

Prob > chi2 0.00 0.00

Observations 388 537

Table 9 Randomeffects panel data estimation (dependent variable: elasticity ofKD fromhedonic regressions)

(1) (2) (3) (4)

Socioeconomic and ecological covariates

Non-waterfront distance buffer 0.042** −0.06 0.041** −0.089

(0.019) (0.10) (0.019) (0.23)

Distance from shore ≥500 m 0.0087 0.008 0.0083 0.0072

(0.0086) (0.0087 (0.0087) (0.0086)

% coastline water depth ≥1.5 m 0.13*** 0.18 0.23** 0.30**

(0.042) (0.17) (0.096) (0.15)

Median home value −5.4e−07** −1.2e−06 −1.1e−06* −2.2e−06*

(2.6e−07) (1.0e−06) (6.5e−07) (1.2e−06)

% coastline along tributary −0.047 0.087

(0.12) (0.22)

Population density 3.4 −86.6

(34.3) (73.4)

% second homes −0.89 −3.76

(1.6) (2.84)

Boats per household 1.23 4.05

(2.7) (4.72)

% tidal fresh salinity 0.037 −0.01

(0.12) (0.21)
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Table 9 continued

(1) (2) (3) (4)

% oligohaline salinity 0.030 0.093

(0.15) (0.27)

Mean KD (1996–2008) −0.013 0.0066

(0.042) (0.077)

Covariates interacted with non-waterfront dummy variable

% coastline water depth ≥1.5 m −0.058 −0.070

* non-waterfront (0.17) (0.10)

Median home value 8.5e−07 1.4e−06

* non-waterfront (1.0e−06) (1.1e−06)

% coastline along tributary −0.16

* non-waterfront (0.22)

Population density 109*

* non-waterfront (63.7)

% second homes 3.40

* non-waterfront (2.59)

Boats per household −3.29

* non-waterfront m (3.98)

% tidal fresh salinity 0.055

* non-waterfront (0.18)

% oligohaline salinity −0.07

* non-waterfront (0.23)

Mean KD (1996–2008) −0.023

* non-waterfront (0.071)

Specification variables

3-year average water clarity −0.045* −0.046* −0.046* −0.049*

(0.027) (0.026) (0.027) (0.026)

Double log model 3.7e−05 −0.0026 −0.00062 −0.0082

(0.012) (0.0092) (0.012) (0.0061)

3-year average water clarity 0.053** 0.053** 0.053** 0.052**

* non-waterfront (0.021) (0.021) (0.021) (0.021)

Double log model 0.00044 0.0032 0.0011 0.0089

* non-waterfront (0.012) (0.0092) (0.012) (0.0065)

Constant −0.0238 0.061 0.088 0.19

(0.032) (0.098) (0.086) (0.23)

Log pseudolikelihood 138.25 139.63 141.12 150.78

Number of groups = 14

N = 280

Standard errors in parentheses
*** p < 0.01; ** p < 0.05; * p < 0.1
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housing value, percent of housing units that are second homes, and population density to
control for the fact that population and housing values may not be evenly distributed over
space and could be correlated with these socioeconomic characteristics. We estimate each
equation using a two-parameter beta distribution model that yields predicted values bounded
by zero and one (Buis et al. 2003).

Table 8 reports the results from the regressions explaining the percent of block-group
housing stock within each distance buffer. As expected, the percent of the block group’s
land area contained within the relevant distance buffer is positive and highly significant in
predicting the percent of housing stock across both equations. Block groups located farther
from the water also have less property value in the two distance buffers. Holding geographic
variables constant, the results show that block groups with more property value along the
waterfront andwithin 500m of thewater have higher housing values andmore second homes.
Block groups with lower population density have more waterfront homes, while those with
higher population density have more homes within 500m of the water.

We apply the results from these regressions to DC, Delaware and Virginia to predict
the proportion of each block group’s housing stock value that falls within each distance
buffer, again making the assumption that relationships estimated using the Maryland data
are applicable to these nearby states. In addition, we set the predicted percent housing stock
in a particular distance buffer equal to zero if the block group contains no land within that
distance buffer and alternately, set the percent housing stock equal to one hundred if the
entirety of the land area falls within the distance buffer.
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